A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Disease-causing missense mutations within the N-terminal transmembrane domain of GlcNAc-1-phosphotransferase impair endoplasmic reticulum translocation or Golgi retention. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transport of newly synthesized lysosomal enzymes to the lysosome requires tagging of these enzymes with the mannose 6-phosphate moiety by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), encoded by two genes, GNPTAB and GNPTG. GNPTAB encodes the α and β subunits, which are initially synthesized as a single precursor that is cleaved by Site-1 protease in the Golgi. Mutations in this gene cause the lysosomal storage disorders mucolipidosis II (MLII) and mucolipidosis III αβ (MLIII αβ). Two recent studies have reported the first patient mutations within the N-terminal transmembrane domain (TMD) of the α subunit of GlcNAc-1-phosphotransferase that cause either MLII or MLIII αβ. Here, we demonstrate that two of the MLII missense mutations, c.80T>A (p.Val27Asp) and c.83T>A (p.Val28Asp), prevent the cotranslational insertion of the nascent GlcNAc-1-phosphotransferase polypeptide chain into the endoplasmic reticulum. The remaining four mutations, one of which is associated with MLII, c.100G>C (p.Ala34Pro), and the other three with MLIII αβ, c.70T>G (p.Phe24Val), c.77G>A (p.Gly26Asp), and c.107A>C (p.Glu36Pro), impair retention of the catalytically active enzyme in the Golgi with concomitant mistargeting to endosomes/lysosomes. Our results uncover the basis for the disease phenotypes of these patient mutations and establish the N-terminal TMD of GlcNAc-1-phosphotransferase as an important determinant of Golgi localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292759PMC
http://dx.doi.org/10.1002/humu.24019DOI Listing

Publication Analysis

Top Keywords

mliii αβ
12
missense mutations
8
mutations n-terminal
8
n-terminal transmembrane
8
transmembrane domain
8
endoplasmic reticulum
8
patient mutations
8
mutations
6
glcnac-1-phosphotransferase
5
disease-causing missense
4

Similar Publications