Passive radiative cooling technology shows great application in next-generation thermal regulation fields, but still suffers from thermodynamic limits. Combining evaporation cooling and radiative cooling offers a promising solution to address this drawback, however, existing dual-functional devices exhibit poor efficiency and structure stability. Inspired by the vapor transfer process in the tree, an encapsulate-structured cellulose hygroscopic aerogel (CHA) is proposed via unidirectional freeze casting of crosslinked cellulose nanofiber/AlO suspension and assembly of LiCl in 3D network of aerogel, featuring daytime radiative cooling integrated with hygroscopic-evaporation cooling functionality.
View Article and Find Full Text PDFBiochem Pharmacol
November 2024
Environ Toxicol Pharmacol
June 2024
UV irradiation significantly alters nanoplastics (NPs) physicochemical properties, thus affecting their biological toxicity. This study is the first to assess the influence of virgin and UV-aged polystyrene NPs (v-PS NPs, a-PS NPs) on the intestinal barrier of ICR mice. We found that a-PS NPs can cause more severe intestinal barrier damage compared with v-PS NPs.
View Article and Find Full Text PDFUp to now, energy conservation, emission reduction, and environmental protection are still the goals that humanity continuously pursues. Passive radiative cooling is a zero-consumption cooling technology, which gains more and more attention. However, the contraction between mechanical strength and cooling performance of traditional radiative cooling materials still limits their scalable production.
View Article and Find Full Text PDFA series of biomass cellulose-derived carbon nanofibers (CCNF) were prepared at different pyrolysis temperatures in this study. Subsequently, this CCNF was combined with bismuth oxybromide (BiOBr) to form BiOBr/CCNF composite. The feasibility of BiOBr/CCNF as photocatalyst was investigated for the treatment against organic dye, rhodamine B (RhB) and inorganic metal ion, hexavalent chromium (Cr(VI)).
View Article and Find Full Text PDFIn the present study, industrial wood flour waste was selected for the first time as the precursor to produce biochar (WFB). The WFB was then used to prepare WFB/BiOBr visible-light photocatalysts, in which WFB acted as the carbon support to enhance the photocatalytic performance of BiOBr. Specifically, the impact of WFB pyrolysis temperature on the visible-light photo-removal performance of WFB/BiOBr was studied through degrading rhodamine B and reducing Cr(VI).
View Article and Find Full Text PDFIn the present study, flexible and conductive nanofiber membranes were prepared by coating PLA nanofibrous scaffolds with carbon nanotubes and silver nanoparticles. The morphology and structure of the prepared membrane was characterized, as well as its mechanical properties, electrical sensing behavior during consecutive stretching-releasing cycles and human motion detecting performance. Furthermore, the antibacterial properties of the membrane was also investigated.
View Article and Find Full Text PDFWe prepared carbon nanofiber (CCNF) using cellulose as the carbon source in this study and utilized for the first time as the support to enhance the catalytic performance of the cobalt ferrite (CoFeO) for peroxymonosulfate (PMS) activation. The catalytic capability of the CoFeO/CCNF nanocomposites activated PMS was investigated through degrading dimethyl phthalate (DMP), a classical organic pesticide pollutant, in water media. The influence factors like CCNF content, nanocomposite and PMS dosage, DMP content, and pH value on the degradation speed were systematically investigated and analyzed.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2019
In the present study, the ZnO-porous carbon (ZnO-C) composites were prepared by pyrolyzing MOF-74 (Zn) precursor at different pyrolysis temperatures. The ZnO-C composites were endowed with ultrafast organic dye adsorption capability and promising supercapacitance properties due to the existence of abundant pores within the composite structures. Having a surface area of 782.
View Article and Find Full Text PDF