Publications by authors named "Anjan K Banerjee"

Short- and long-distance mobile signals (mobile RNAs and proteins) are integral parts of the local and systemic communications that coordinate various physiological processes at whole plant level and have far-reaching impacts on plant productivity. A coherent description highlighting integral roles of these mobile signals in controlling phenotypic traits and plant productivity would be invaluable. Here, we emphasize how key mobile RNAs (mRNAs, small RNAs, and long non-coding RNAs) and proteins including RNA-binding proteins function as vital regulators of multi-faceted aspects of phenotypic traits, such as formation of shoot-apical meristem, leaf morphology, root architecture, flowering, ripening of fleshy fruits, tuberization, crop yield, and abiotic stress responses, that eventually govern plant productivity.

View Article and Find Full Text PDF

In plants, asymmetric cell divisions result in distinct cell fates forming large and small daughter cells, adding to the cellular diversity in an organ. SCARECROW (SCR), a GRAS domain-containing transcription factor controls asymmetric periclinal cell divisions in flowering plants by governing radial patterning of ground tissue in roots and cell proliferation in leaves. Though SCR homologs are present across land plant lineages, the current understanding of their role in cellular patterning and leaf development is mostly limited to flowering plants.

View Article and Find Full Text PDF

A significant number of discoveries in past two decades have established the importance of long-distance signaling in controlling plant growth, development, and biotic and abiotic stress responses. Numerous mobile signals, such as mRNAs, proteins, including RNA-binding proteins, small RNAs, sugars, and phytohormones, are shown to regulate various agronomic traits such as flowering, fruit, seed development, and tuberization. Potato is a classic model tuber crop, and several mobile signals are known to govern tuber development.

View Article and Find Full Text PDF

Tandem direct repeat (TDR)-containing proteins, present across all domains of life, play crucial roles in plant development and defense mechanisms. Previously, we identified that disruption of a bryophyte-specific protein family, SHORT-LEAF (SHLF), possessing the longest reported TDRs, is the cause of the shlf mutant phenotype in Physcomitrium patens. shlf exhibits reduced apical dominance, altered auxin distribution, and 2-fold shorter leaves.

View Article and Find Full Text PDF

Phased short-interfering RNAs (phasiRNAs) fine tune various stages of growth, development, and stress responses in plants. Potato (Solanum tuberosum) tuberization is a complex process, wherein a belowground modified stem (stolon) passes through developmental stages like swollen stolon and minituber before it matures to a potato. Previously, we identified several phasiRNA-producing loci (PHAS) from stolon-to-tuber transition stages.

View Article and Find Full Text PDF

We demonstrate a new regulatory mechanism in the jasmonic acid (JA) and salicylic acid (SA) mediated crosstalk in potato defense response, wherein, miR160 target StARF16 (a gene involved in growth and development) binds to the promoter of StNPR1 (a defense gene) and negatively regulates its expression to suppress the SA pathway. Overall, our study establishes the importance of StARF16 in regulation of StNPR1 during JA mediated defense response upon necrotrophic pathogen interaction. Plants employ antagonistic crosstalk between salicylic acid (SA) and jasmonic acid (JA) to effectively defend them from pathogens.

View Article and Find Full Text PDF

Plants exhibit diverse developmental plasticity and modulate growth responses under various environmental conditions. Potato (Solanum tuberosum), a modified stem and an important food crop, serves as a substantial portion of the world's subsistence food supply. In the past two decades, crucial molecular signals have been identified that govern the tuberization (potato development) mechanism.

View Article and Find Full Text PDF

Convergent evolution of shoot development across plant lineages has prompted numerous comparative genetic studies. Though functional conservation of gene networks governing flowering plant shoot development has been explored in bryophyte gametophore development, the role of bryophyte-specific genes remains unknown. Previously, we have reported Tnt1 insertional mutants of moss defective in gametophore development.

View Article and Find Full Text PDF

Causality assessment for idiosyncratic ADRs mainly relies on epidemiology, signal detection and less often on proven or plausible mechanistic evidence of the drug at a cellular or organ level. Distinct clones of cells can exist within organs of individual patients, some conferring susceptibility to well-recognised Adverse Drug Reactions (ADRs). Recent advances in molecular biology have allowed the development of single-cell clonal techniques, including single-cell RNA sequencing (scRNA-seq) to molecularly fingerprint ADRs and distinguish between distinct clones of cells within organs in individuals, which may confer differing susceptibilities to ADRs.

View Article and Find Full Text PDF

Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals.

View Article and Find Full Text PDF

Polycomb repressive complex (PRC) group proteins regulate various developmental processes in plants by repressing target genes via H3K27 trimethylation, and they function antagonistically with H3K4 trimethylation mediated by Trithorax group proteins. Tuberization in potato has been widely studied, but the role of histone modifications in this process is unknown. Recently, we showed that overexpression of StMSI1, a PRC2 member, alters the expression of tuberization genes in potato.

View Article and Find Full Text PDF
Article Synopsis
  • About 15,000 angiosperms are dioecious, meaning they have distinct male and female plants, but the exact processes behind their sex determination, especially involving Y chromosomes, are not well understood.
  • The study investigates a dioecious cucurbit with a notable level of X/Y chromosome differences, identifying sex-linked genes through RNA sequencing and a method called SEX-DETector.
  • Findings indicate significant Y chromosome degeneration, evidenced by a lower average gene expression on the Y chromosome and a potential loss of about 40% of Y-linked genes, while the X chromosome appears to compensate for this reduced expression, hinting at common patterns of dosage compensation across various plant species.
View Article and Find Full Text PDF

The potato serves as the fourth most important food crop on the planet after the three cereal crops. It is rich in starch, storage proteins and important vitamins, dietary antioxidants and minerals. Potato is a modified stem (stolon) that grows underground, at the base of the plant, under favourable conditions.

View Article and Find Full Text PDF

Coccinia grandis is an interesting model system to understand dioecy in Cucurbitaceae family. Recent transcriptomics and proteomics studies carried out to understand the sex expression in C. grandis have resulted in identification of many candidate sex-biased genes.

View Article and Find Full Text PDF

Leaf development is a complex process and factors such as size, shape, curvature, compounding, and texture determine the final leaf morphology. MicroRNA160 is one of the crucial players that has been shown to regulate lamina formation and compounding in tomato. In this study, we show that miR160 also regulates leaf curvature in potato.

View Article and Find Full Text PDF

Tuberization in potato is governed by many intrinsic and extrinsic factors. Various molecular signals, such as red light photoreceptor (StPHYB), BEL1-like transcription factor (StBEL5), CYCLING DOF FACTOR1 (StCDF1), StCO1/2 (CONSTANS1/2) and StSP6A (Flowering Locus T orthologue), function as crucial regulators during the photoperiod-dependent tuberization pathway. StCDF1 induces tuberization by increasing StSP6A levels via StCO1/2 suppression.

View Article and Find Full Text PDF

Polycomb Repressive Complexes (PRC1 and PRC2) regulate developmental transitions in plants. AtBMI1, a PRC1 member, represses micro RNA156 (miR156) to trigger the onset of adult phase in Arabidopsis (). miR156 overexpression (OE) reduces below-ground tuber yield, but stimulates aerial tubers in potato ( ssp ) under short-day (SD) photoperiodic conditions.

View Article and Find Full Text PDF

Background: Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms.

View Article and Find Full Text PDF

Storage tuber and root crops make up a significant portion of the world's subsistence food supply. Because of their importance in food security, yield enhancement has become a priority. A major focus has been to understand the biology of belowground storage organ development.

View Article and Find Full Text PDF

The gametophyte of moss exhibits a simple body plan, yet its growth is regulated by complex developmental phenomena similar to angiosperms. Because moss can be easily maintained under laboratory conditions, amenable for gene targeting and the availability of genome sequence, P. patens has become an attractive model system for studying evolutionary traits.

View Article and Find Full Text PDF

Background: Small RNAs (sRNAs), especially miRNAs, act as crucial regulators of plant growth and development. Two other sRNA groups, trans-acting short-interfering RNAs (tasiRNAs) or phased siRNAs (phasiRNAs), are also emerging as potential regulators of plant development. Stolon-to-tuber transition in potato is an important developmental phase governed by many environmental, biochemical and hormonal cues.

View Article and Find Full Text PDF

Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are often used for benign and Sm1 large non-pedunculated rectal polyps (LNPRPs), although other surgical techniques including transanal endoscopic microsurgery (TEMS) and transanal minimal invasive surgery remain available. This review covers the role of pre-excisional imaging and selective biopsy of LNPRPs. Areas covered: Polyps between 2 and 3 cm with favorable features (Paris 1, Kudo III/IV pit patterns, and non-lateral spreading type [LST]) may have a one-stage EMR without biopsy and imaging, provided adequate expertise is available with other technologies such as magnifying chromoendoscopy.

View Article and Find Full Text PDF

Background: Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development.

View Article and Find Full Text PDF

To combat pathogen infection, plants employ local defenses in infected sites and elicit systemic acquired resistance (SAR) in distant tissues. MicroRNAs have been shown to play a significant role in local defense, but their association with SAR is unknown. In addition, no such studies of the interaction between potato and Phytophthora infestans have been reported.

View Article and Find Full Text PDF