A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Polycomb group methyltransferase StE(z)2 and deposition of H3K27me3 and H3K4me3 regulate the expression of tuberization genes in potato. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polycomb repressive complex (PRC) group proteins regulate various developmental processes in plants by repressing target genes via H3K27 trimethylation, and they function antagonistically with H3K4 trimethylation mediated by Trithorax group proteins. Tuberization in potato has been widely studied, but the role of histone modifications in this process is unknown. Recently, we showed that overexpression of StMSI1, a PRC2 member, alters the expression of tuberization genes in potato. As MSI1 lacks histone-modification activity, we hypothesized that this altered expression could be caused by another PRC2 member, StE(z)2, a potential H3K27 methyltransferase in potato. Here, we demonstrate that a short-day photoperiod influences StE(z)2 expression in the leaves and stolons. StE(z)2 overexpression alters plant architecture and reduces tuber yield, whereas its knockdown enhances yield. ChIP-sequencing using stolons induced by short-days indicated that several genes related to tuberization and phytohormones, such as StBEL5/11/29, StSWEET11B, StGA2OX1, and StPIN1 carry H3K4me3 or H3K27me3 marks and/or are StE(z)2 targets. Interestingly, we observed that another important tuberization gene, StSP6A, is targeted by StE(z)2 in leaves and that it has increased deposition of H3K27me3 under long-day (non-induced) conditions compared to short days. Overall, our results show that StE(z)2 and deposition of H3K27me3 and/or H3K4me3 marks might regulate the expression of key tuberization genes in potato.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eraa468DOI Listing

Publication Analysis

Top Keywords

deposition h3k27me3
12
tuberization genes
12
genes potato
12
stez2 deposition
8
regulate expression
8
expression tuberization
8
group proteins
8
prc2 member
8
stez2
7
tuberization
6

Similar Publications