Dioecy is a breeding system with separate females and males, where sex can be determined by sex chromosomes (for instance, XY males and XX females). Dioecy is generally associated with the evolution of sexual dimorphism. In this study, we tested whether small RNAs (sRNAs) play a role in sexual dimorphism and sex chromosome evolution in Silene latifolia.
View Article and Find Full Text PDFScience
February 2025
In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plant has a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome.
View Article and Find Full Text PDFSex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution.
View Article and Find Full Text PDFRNA molecules carry information in their primary sequence and also their secondary structure. Secondary structure can confer important functional information, but it is also a signal for an RNAi-like host epigenetic response mediated by small RNAs (smRNAs). In this study, we used two bioinformatic methods to predict local secondary structures across features of the maize genome, focusing on small regions that had similar folding properties to pre-miRNA loci.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2022
In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level.
View Article and Find Full Text PDFGene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature.
View Article and Find Full Text PDFPhenotypic variation determines the capacity of plants to adapt to changing environments and to colonize new habitats. Deciphering the mechanisms contributing to plant phenotypic variation and their effects on plant ecological interactions and evolutionary dynamics is thus central to all biological disciplines. In the past few decades, research on plant epigenetics is showing that (1) epigenetic variation is related to phenotypic variation and that some epigenetic marks drive major phenotypic changes in plants; (2) plant epigenomes are highly diverse, dynamic, and can respond rapidly to a variety of biotic and abiotic stimuli; (3) epigenetic variation can respond to selection and therefore play a role in adaptive evolution.
View Article and Find Full Text PDFIn plants, mammals and insects, some genes are methylated in the CG dinucleotide context, a phenomenon called gene body methylation (gbM). It has been controversial whether this phenomenon has any functional role. Here, we took advantage of the availability of 876 leaf methylomes in Arabidopsis thaliana to characterize the population frequency of methylation at the gene level and to estimate the site-frequency spectrum of allelic states.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2021
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity.
View Article and Find Full Text PDFSex determination systems in plants can involve either female or male heterogamety (ZW or XY, respectively). Here we used Illumina short reads, Oxford Nanopore Technologies (ONT) long reads and Hi-C reads to assemble the first chromosome-scale genome of a female willow tree (Salix dunnii), and to predict genes using transcriptome sequences and available databases. The final genome sequence of 328 Mb in total was assembled in 29 scaffolds, and includes 31,501 predicted genes.
View Article and Find Full Text PDFMol Plant
February 2021
Transposable elements (TEs) regularly capture fragments of genes. When the host silences these TEs, siRNAs homologous to the captured regions may also target the genes. This epigenetic crosstalk establishes an intragenomic conflict: silencing the TEs has the cost of silencing the genes.
View Article and Find Full Text PDFAbout 15,000 angiosperm species (∼6%) have separate sexes, a phenomenon known as dioecy. Why dioecious taxa are so rare is still an open question. Early work reported lower species richness in dioecious compared with nondioecious sister clades, raising the hypothesis that dioecy may be an evolutionary dead-end.
View Article and Find Full Text PDFIt remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) in Vitis species. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes.
View Article and Find Full Text PDFSelf-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations.
View Article and Find Full Text PDFThis article comments on: . Sexual dimorphism and rapid turnover in gene expression in pre-reproductive seedlings of a dioecious herb. Annals of Botany : 1119–1131.
View Article and Find Full Text PDFSuppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb on the basis of cytological analysis, genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups.
View Article and Find Full Text PDFIn the last decade, progress has been made in methods to identify the sex determination system in plants. This gives the opportunity to study sex chromosomes that arose independently at different phylogenetic scales, and thus allows the discovery and the understanding of early stages of sex chromosome evolution. In the genus Silene, sex chromosomes have evolved independently in at least two clades from a nondioecious ancestor, the Melandrium and Otites sections.
View Article and Find Full Text PDFMol Biol Evol
January 2019
Gene body methylation (gbM) is typically characterized by DNA methylation in the CG context within coding regions and is associated with constitutive genes that have moderate to high expression levels. A recent study discovered the loss of gbM in two plant species (Eutrema salsugineum and Conringia planisiliqua), illustrating that gbM is not necessary for survival and reproduction. The same paper stated there was no detectable effect of gbM loss on gene expression (GE).
View Article and Find Full Text PDFNat Plants
September 2018
Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes.
View Article and Find Full Text PDFPlant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals.
View Article and Find Full Text PDFSeparate sexes and sex-biased gene expression have repeatedly evolved in animals and plants, but the underlying changes in gene expression remain unknown. Here, we studied a pair of plant species, one in which separate sexes and sex chromosomes evolved recently and one which maintained hermaphrodite flowers resembling the ancestral state, to reconstruct expression changes associated with the evolution of dioecy. We found that sex-biased gene expression has evolved in autosomal and sex-linked genes in the dioecious species.
View Article and Find Full Text PDFGenome Biol Evol
August 2016
We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences.
View Article and Find Full Text PDF