Publications by authors named "Alessandro Gozzi"

Background: Executive functions (EF) are cognitive processes that underlie goal-directed abilities and behaviors which have been found to be variable in autistic children. While EFs are well-established predictors of academic and social outcomes in neurotypical children, it is unclear if these same associations are true for children with autism spectrum disorder (ASD). This study examined the relation between EF and academic and social skills in cognitively able, verbal kindergarteners with ASD, while using a multimeasurement approach to EF skills.

View Article and Find Full Text PDF

Driven by a period of accelerated progress and recent technical breakthroughs, whole-brain functional neuroimaging in rodents offers exciting new possibilities for addressing basic questions about brain function and its alterations. In response to lessons learned from the human neuroimaging community, leading scientists and researchers in the field convened to address existing barriers and outline ambitious goals for the future. This article captures these discussions, highlighting a shared vision to advance rodent functional neuroimaging into an era of increased impact.

View Article and Find Full Text PDF

Creatine Transporter Deficiency (CTD) is an X-linked disorder due to the loss of SLC6A8 gene and presenting with low brain creatine, intellectual disability, autistic-like behavior and seizures. No treatments are available yet for CTD, and little is known about the brain circuit alterations underlying its pathological endophenotypes. Here, we tracked brain network and behavioral dysfunction in a murine model of CTD at two stages of disease progression.

View Article and Find Full Text PDF

Significant genetic, behavioural and neuroanatomic heterogeneity is common in autism spectrum- and related- neurodevelopmental disorders (NDDs). This heterogeneity constrains the development of effective therapies for diverse patients in precision medicine paradigms. This has led to the search for subgroups of individuals having common etiologic factors/biology (e.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) is a brain region involved in higher-order cognitive processes such as attention, emotional regulation, and social behavior. However, the delineation of distinct subdivisions within the mouse PFC and their contributions to the broader brain network function remain debated. This study utilizes resting-state functional magnetic resonance imaging (MRI) from a cohort of 100 C57BL/6J wild-type mice to derive the functional connectivity (FC)-based parcellation of the mouse PFC with voxel resolution.

View Article and Find Full Text PDF

Understanding how localized brain interventions influence whole-brain dynamics is essential for deciphering neural function and designing therapeutic strategies. Using longitudinal functional MRI datasets collected from mice, we investigated the effects of focal interventions, such as thalamic lesions and chemogenetic silencing of cortical hubs. We found that these local manipulations disrupted the brain's ability to sustain network-wide activity, leading to global functional connectivity (FC) reconfigurations.

View Article and Find Full Text PDF

The intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode.

View Article and Find Full Text PDF

It is frequently assumed that the phenotypic heterogeneity in autism spectrum disorder reflects underlying pathobiological variation. However, direct evidence in support of this hypothesis is lacking. Here, we leverage cross-species functional neuroimaging to examine whether variability in brain functional connectivity reflects distinct biological mechanisms.

View Article and Find Full Text PDF

Chromosome 22q11.2 deletion increases the risk of neuropsychiatric disorders like autism and schizophrenia. Disruption of large-scale functional connectivity in 22q11 deletion syndrome (22q11DS) has been widely reported, but the biological factors driving these changes remain unclear.

View Article and Find Full Text PDF

Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies.

View Article and Find Full Text PDF

Clinical, neuroimaging and genomics evidence have increasingly underscored a degree of overlap between autism and attention-deficit/hyperactivity disorder (ADHD). This study explores the specific contribution of their core symptoms to shared biology in a sample of N=166 verbal children (6-12 years) with rigorously-established primary diagnoses of either autism or ADHD (without autism). We investigated the associations between inter-individual differences in clinician-based dimensional measures of autism and ADHD symptoms and whole-brain low motion intrinsic functional connectivity (iFC).

View Article and Find Full Text PDF

Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome.

View Article and Find Full Text PDF

Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, invasive techniques like autoradiography or lesions have been used to study it, limiting the exploration of whole brain networks. Recent advances in fMRI for avian brains now open new windows to explore bird's brain functions at the network level.

View Article and Find Full Text PDF

Evolutionarily relevant networks have been previously described in several mammalian species using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic organization of resting-state fMRI network activity is conserved across mammalian species remains unclear.

View Article and Find Full Text PDF

The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.

View Article and Find Full Text PDF

Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene () affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases.

View Article and Find Full Text PDF

Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes.

View Article and Find Full Text PDF

Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, only invasive techniques, such as autoradiography or lesion, have been employed to understand this behaviour. The primary limitation of these methods lies in their constrained access to the entire brain, impeding the exploration of brain networks crucial at various stages of this paradigm.

View Article and Find Full Text PDF

Exploring how the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the major goals of modern neuroscience. At the macroscale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be considered: the directionality of the structural connectome and limitations in explaining networks functions through an undirected measure such as FC.

View Article and Find Full Text PDF

Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens.

View Article and Find Full Text PDF

Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems.

View Article and Find Full Text PDF

Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species.

View Article and Find Full Text PDF
Article Synopsis
  • - Complement signaling helps microglia, which are brain cells, clean up and remove unnecessary connections in the brain, a process known as synaptic pruning.
  • - Scientists studied mice without a special receptor called Complement receptor 3 to see how it affected the pruning process in their brains.
  • - They found that these mice didn't have problems with synaptic pruning but struggled to eliminate some neurons during a crucial time, leading to thicker brain areas and stronger brain connections later on.
View Article and Find Full Text PDF

The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal "eat-me" signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described.

View Article and Find Full Text PDF