Connectomes' topological organization can be quantified using graph theory. Here, we investigated brain networks in higher dimensional spaces defined by up to 10 graph theoretic nodal properties. These properties assign a score to nodes, reflecting their meaning in the network.
View Article and Find Full Text PDFIn this study, we introduce a denoising method aimed at improving the contrast ratio in low-field MRI (LFMRI) using an advanced 3D deep convolutional residual network model. Our approach employs synthetic brain imaging datasets that closely mimic the contrast and noise characteristics of LFMRI scans, addressing the limitation of available in-vivo LFMRI datasets for training deep learning models. In the simulation data, the Relative Contrast Ratio (RCR) increased, and similar improvements were observed in the in-vivo data across different imaging conditions.
View Article and Find Full Text PDFBrain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems.
View Article and Find Full Text PDF