Introduction: Despite accounting for only 2% of body weight, the human brain requires significant amounts of glucose, even at rest, underscoring the importance of functional-metabolic relationships. Previous studies revealed moderate associations between resting-state fMRI functional connectivity (FC) and local metabolism via [F]FDG-PET, yet much remains to be understood, particularly regarding their coupling between functional and metabolic networks.
Methods: To this end, we employed multivariate Partial Least Squares Correlation (PLSC) to investigate the functional-metabolic relationship at both nodal and network level.
Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest.
View Article and Find Full Text PDFThis study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description.
View Article and Find Full Text PDFExploring how the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the major goals of modern neuroscience. At the macroscale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be considered: the directionality of the structural connectome and limitations in explaining networks functions through an undirected measure such as FC.
View Article and Find Full Text PDFPLoS Comput Biol
January 2024
The network control theory framework holds great potential to inform neurostimulation experiments aimed at inducing desired activity states in the brain. However, the current applicability of the framework is limited by inappropriate modeling of brain dynamics, and an overly ambitious focus on whole-brain activity control. In this work, we leverage recent progress in linear modeling of brain dynamics (effective connectivity) and we exploit the concept of target controllability to focus on the control of a single region or a small subnetwork of nodes.
View Article and Find Full Text PDFHow the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the biggest questions of modern neuroscience. At the macro-scale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be taken into account: the directionality of the structural connectome and the limitations of describing network functions in terms of FC.
View Article and Find Full Text PDF