Purpose: To investigate whether heating contributions produced by radiofrequency (RF) and gradient fields superpose sufficiently at the worst-case locations to justify their simultaneous consideration in magnetic resonance imaging (MRI) implant safety labeling.
Theory And Methods: Six implant models were positioned in an ASTM phantom and realistically implanted in two anatomical human models, and exposed to gradient and RF fields at 64 MHz and 128 MHz. The simulations with the anatomical body models considered different axial exposure landmarks inside the RF and gradient body coils.
J Magn Reson Imaging
August 2025
Comput Methods Programs Biomed
November 2025
Background And Objective: Safety assessment of patients with one-dimensionally structured passive implants, like cranial meshes or stents, exposed to low or medium frequency magnetic fields, like those generated in magnetic resonance imaging or magnetic hyperthermia, can be challenging, because of the different length scales of the implant and the human body. Most of the methods used to estimate the heating induced near such implants neglect the presence of the metallic materials within the body, modelling the metal as thermal seeds. To overcome this limitation, a novel numerical approach that solves three-dimensional and one-dimensional coupled problems is proposed.
View Article and Find Full Text PDFIntroduction: Specific absorption rate (SAR) is crucial for monitoring radiofrequency power absorption during MRI. Although local SAR distribution is usually calculated through numerical simulations, they are impractical during exams, limiting real-time patient-specific SAR assessment. This study confirms the feasibility of deriving in vivo, subject-specific, image-based SAR and 10-g SAR maps directly from MRI data.
View Article and Find Full Text PDFPurpose: To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses.
Methods: The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms).
Numerical simulations are largely adopted to estimate dosimetric quantities, e.g. specific absorption rate (SAR) and temperature increase, in tissues to assess the patient exposure to the radiofrequency (RF) field generated during magnetic resonance imaging (MRI).
View Article and Find Full Text PDFMagn Reson Med
January 2024
Purpose: To investigate whether the risk of peripheral nerve stimulation increases in the presence of bulky metallic prostheses implanted in a patient's body.
Methods: A computational tool was used to calculate the electric field (E-field) induced in a realistic human model due to the action of gradient fields. The calculations were performed both on the original version of the anatomical model and on a version modified through "virtual surgery" to incorporate knee, hip, and shoulder prostheses.
In this study, we aimed to develop a fast and robust high-resolution technique for clinically feasible electrical properties tomography based on water content maps (wEPT) using Quantitative Transient-state Imaging (QTI), a multiparametric transient state-based method that is similar to MR fingerprinting. Compared with the original wEPT implementation based on standard spin-echo acquisition, QTI provides robust electrical properties quantification towards B inhomogeneities and full quantitative relaxometry data. To validate the proposed approach, 3D QTI data of 12 healthy volunteers were acquired on a 1.
View Article and Find Full Text PDFBiomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties.
View Article and Find Full Text PDFPurpose: To propose an efficient numerical method to predict the temperature increase of an implantable medical device induced by any linearly polarized homogeneous magnetic field, according to the ISO 10974 methodology for testing of gradient-induced device heating.
Theory And Methods: The concepts of device-specific power and temperature tensors are introduced to mathematically describe the electromagnetic and thermal anisotropic behavior of the device, from which the device heating for an arbitrary exposure direction can be predicted. The proposed method is compared to a brute-force approach based on simulations, and validated by applying it to four reference orthopedic implants with a commercial simulation software.
Uncertainty assessment is a fundamental step in quantitative magnetic resonance imaging because it makes comparable, in a strict metrological sense, the results of different scans, for example during a longitudinal study. Magnetic resonance-based electric properties tomography (EPT) is a quantitative imaging technique that retrieves, non-invasively, a map of the electric properties inside a human body. Although EPT has been used in some early clinical studies, a rigorous experimental assessment of the associated uncertainty has not yet been performed.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2023
Background And Objectives: Electric currents are induced in implanted medical devices with metallic filamentary closed loops (e.g., fixation grids, stents) when exposed to time varying magnetic fields, as those generated during certain diagnostic and therapeutic biomedical treatments.
View Article and Find Full Text PDFTo quantify the effects of different levels of realism in the description of the anatomy around hip, knee or shoulder implants when simulating, numerically, radiofrequency and gradient-induced heating in magnetic resonance imaging. This quantification is needed to define how precise the digital human model modified with the implant should be to get realistic dosimetric assessments..
View Article and Find Full Text PDFObjective: To investigate the eddy current heating that occurs in metallic biliary stents during magnetic hyperthermia treatments and to assess whether these implants should continue to be an exclusion criterion for potential patients.
Methods: Computer simulations were run on stent heating during the hyperthermia treatment of local pancreatic tumors (5-15 mT fields at 300 kHz for 30 min), considering factors such as wire diameter, type of stent alloy, and field orientation. Maxwell's equations were solved numerically in a bile duct model, including the secondary field produced by the stents.
Diagnostics (Basel)
August 2022
Due to the large variety of possible clinical scenarios, a reliable heating-risk assessment is not straightforward when patients with arthroplasty undergo MRI scans. This paper proposes a simple procedure to estimate the thermal effects induced in patients with hip, knee, or shoulder arthroplasty during MRI exams. The most representative clinical scenarios were identified by a preliminary frequency analysis, based on clinical service databases, collecting MRI exams of 11,658 implant carrier patients.
View Article and Find Full Text PDFMechanical stimuli are fundamental in the development of organs and tissues, their growth, regeneration or disease. They influence the biochemical signals produced by the cells, and, consequently, the development and spreading of a disease. Moreover, tumour cells are usually characterized by a decrease in the cell mechanical properties that may be directly linked to their metastatic potential.
View Article and Find Full Text PDFPurpose: To theoretically investigate the feasibility of a novel procedure for testing the MRI gradient-induced heating of medical devices and translating the results into clinical practice.
Methods: The concept of index of stress is introduced by decoupling the time waveform characteristics of the gradient field signals from the field spatial distribution within an MRI scanner. This index is also extended to consider the anisotropy of complex bulky metallic implants.
Comput Methods Programs Biomed
February 2022
A numerical procedure for analyzing electromagnetic (EM) fields interactions with biological tissues is presented. The proposed approach aims at drastically reducing the computational burden required by the repeated solution of large scale problems involving the interaction of the human body with EM fields, such as in the study of the time evolution of EM fields, uncertainty quantification, and inverse problems. The proposed volume integral equation (VIE), focused on low frequency applications, is a system of integral equations in terms of current density and scalar potential in the biological tissues excited by EM fields and/or electrodes connected to the human body.
View Article and Find Full Text PDFBearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface of two common types of prostheses affects the safety and efficiency of magnetic hyperthermia treatments of localized tumors. The paper also proposes the combination of a multi-criteria decision analysis and a graphical representation of calculated data as an initial screening during the preclinical risk assessment for each patient.
View Article and Find Full Text PDFPurpose: To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session.
Methods: In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.
Proc Inst Mech Eng H
October 2020
The infrapatellar fat pad is an adipose tissue in the knee that facilitates the distribution of synovial fluid and absorbs impulsive actions generated through the joint. The correlation between morphological configuration and mechanical properties is analyzed by a computational approach. The microscopic anatomy of the infrapatellar fat pad is studied aiming to measure the dimension of adipose lobules and the thickness of connective septa.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2020
In this paper the authors present the results of a dosimetric analysis related to the exposure of live-line workers to the magnetic fields generated by high voltage overhead lines and substations. The study extends the work published by Dawson et al. in 2002, considering more evolved anatomical models nowadays available, the new reference limits given by the 2013/35/EU Directive, and a new methodology, based on the intercomparison of two alternative solvers and the use of data filtering.
View Article and Find Full Text PDFThis work focuses on the in silico evaluation of the energy deposed by MRI switched gradient fields in bulk metallic implants and the consequent temperature increase in the surrounding tissues. An original computational strategy, based on the subdivision of the gradient coil switching sequences into sub-signals and on the time-harmonic electromagnetic field solution, allows to realistically simulate the evolution of the phenomena produced by the gradient coils fed according to any MRI sequence. Then, Pennes' bioheat equation is solved through a Douglas-Gunn time split scheme to compute the time-dependent temperature increase.
View Article and Find Full Text PDF