A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Impact of simultaneous exposure to RF and gradient electromagnetic fields on implant MR safety labeling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To investigate whether heating contributions produced by radiofrequency (RF) and gradient fields superpose sufficiently at the worst-case locations to justify their simultaneous consideration in magnetic resonance imaging (MRI) implant safety labeling.

Theory And Methods: Six implant models were positioned in an ASTM phantom and realistically implanted in two anatomical human models, and exposed to gradient and RF fields at 64 MHz and 128 MHz. The simulations with the anatomical body models considered different axial exposure landmarks inside the RF and gradient body coils. The exposures were scaled to represent two sets of scenarios: either limited by the implant's MR conditional labeling to a fixed peak temperature rise, or representing an EPI or TrueFISP examination with clinically relevant parameters, where the implant label is not limiting.

Results: The temperature enhancement due to the combined RF and gradient sources, evaluated with respect to the maximum values obtained separately, depends on the implant, pulse sequence, and exposure landmark. A maximum relative enhancement of about 65% was found in the ASTM phantom, and maximum absolute enhancements above 0.3 K were found in anatomical models with realistic pulse sequences.

Conclusion: There are clinically relevant MR examination scenarios where the maximum heating contributions produced by RF and gradient fields combine, enhancing the local peak temperature increase beyond that obtained from either assessment alone. The results prove to be useful for defining safety margins on the maximum allowable temperature increase, avoiding the requirement of a combined gradient coil and RF test.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.70059DOI Listing

Publication Analysis

Top Keywords

gradient fields
12
implant safety
8
heating contributions
8
contributions produced
8
astm phantom
8
peak temperature
8
clinically relevant
8
combined gradient
8
temperature increase
8
gradient
7

Similar Publications