Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A numerical procedure for analyzing electromagnetic (EM) fields interactions with biological tissues is presented. The proposed approach aims at drastically reducing the computational burden required by the repeated solution of large scale problems involving the interaction of the human body with EM fields, such as in the study of the time evolution of EM fields, uncertainty quantification, and inverse problems. The proposed volume integral equation (VIE), focused on low frequency applications, is a system of integral equations in terms of current density and scalar potential in the biological tissues excited by EM fields and/or electrodes connected to the human body. The proposed formulation requires the voxelization of the human body and takes advantage of the regularity of such discretization by speeding-up the computational procedure. Moreover, it exploits recent advancements in the solution of VIE by means of iterative preconditioned solvers and ad hoc parametric Model Order Reduction techniques. The efficiency of the proposed tool is demonstrated by applying it to a couple of realistic model problems: the assessment of the peripheral nerve stimulation, performed in terms of evaluation of the induced electric field, due to the gradient coils of a magnetic resonance imaging scanner during a clinical examination and the assessment of the exposure to environmental fields at 50 Hz of live-line workers with uncertain properties of the biological tissues. Thanks to the proposed method, uncertainty quantification analyses and time domain simulations are possible even for large scale problems and they can be performed on standard computers and reasonable computation time. Sample implementation of the method is made publicly available at https://github.com/UniPD-DII-ETCOMP/BioMOR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2021.106543 | DOI Listing |