Publications by authors named "Aleksander S Popel"

Unlabelled: Oncolytic peptides are amphipathic peptides that specifically induce cell death in cancer cells by rupturing the cell membrane. Despite their therapeutic potential, few have advanced to clinical trials, and none have been approved for cancer treatment, highlighting the need for more potent and safe candidates. Moreover, the structure-activity relationship (SAR) of oncolytic peptides remains poorly understood.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) are important pro-angiogenic factors in angiogenesis-dependent diseases. While sharing some signaling pathways, their contrasting effect on vascular permeability remains under investigation. To explore how these factors promote angiogenesis, we developed, calibrated, and validated a data-driven mechanistic computational model of HGF and VEGF signaling in endothelial cells (ECs).

View Article and Find Full Text PDF

Dysregulated angiogenesis signaling leads to pathological vascular growth and leakage, and is a hallmark of many diseases including cancer and ocular diseases. In peripheral arterial disease, the concomitant increase in vascular permeability presents significant challenges in therapeutic efforts to improve perfusion by stimulating vascular growth. Building a mechanistic understanding of the endothelial control of vascular growth and permeability signaling is crucial to guide our efforts to identify therapeutic strategies that permit blood vessel growth while maintaining vascular stability.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is widely recognized for its central role in driving cancer progression and influencing prognostic outcomes. Increasing efforts have been dedicated to characterizing it, including its analysis with modern deep learning. However, identifying generalizable biomarkers has been limited by the uninterpretable nature of their predictions.

View Article and Find Full Text PDF

Several debilitating eye diseases that lead to vision loss are driven by ocular neovascularization, which entails abnormal blood vessel growth in the eye. Neovascularization is often induced by the upregulation of vascular endothelial growth factor (VEGF) ligands, which activate angiogenesis through engagement of VEGF receptor (VEGFR) proteins on endothelial cells. Therapeutic interventions that block ocular neovascularization by targeting VEGF ligands, particularly VEGF-A, have revolutionized eye disease treatment.

View Article and Find Full Text PDF

Despite an increasing number of clinical trials, cancer is one of the leading causes of death worldwide in the past decade. Among all complex diseases, clinical trials in oncology have among the lowest success rates, in part due to the high intra- and inter-tumoral heterogeneity. There are more than a thousand cancer drugs and treatment combinations being investigated in ongoing clinical trials for various cancer subtypes, germline mutations, metastasis, etc.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options, which warrants the identification of novel therapeutic targets. Deciphering nuances in the tumor microenvironment (TME) may unveil insightful links between antitumor immunity and clinical outcomes; however, such connections remain underexplored. Here, we employed a data set derived from imaging mass cytometry of 71 TNBC patient specimens at single-cell resolution and performed in-depth quantifications with a suite of multiscale computational algorithms.

View Article and Find Full Text PDF
Article Synopsis
  • * A study used advanced modeling and data analysis to assess 90 potential biomarkers, finding that using combinations of these markers increased specificity but decreased sensitivity.
  • * Notably, early on-treatment biomarkers, like monitoring tumor size changes two weeks after starting treatment, displayed better accuracy, and blood-based biomarkers were also effective, offering a less invasive method for identifying responsive patients.
View Article and Find Full Text PDF

Uveal melanoma (UM), the primary intraocular tumor in adults, arises from eye melanocytes and poses a significant threat to vision and health. Despite its rarity, UM is concerning due to its high potential for liver metastasis, resulting in a median survival of about a year after detection. Unlike cutaneous melanoma, UM responds poorly to immune checkpoint inhibition (ICI) due to its low tumor mutational burden and PD-1/PD-L1 expression.

View Article and Find Full Text PDF

Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress.

View Article and Find Full Text PDF

Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.

View Article and Find Full Text PDF

Due to the lack of treatment options, there remains a need to advance new therapeutics in hepatocellular carcinoma (HCC). The traditional approach moves from initial molecular discovery through animal models to human trials to advance novel systemic therapies that improve treatment outcomes for patients with cancer. Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating delivery of new therapeutics to patients.

View Article and Find Full Text PDF

Recently, immunotherapies for antitumoral response have adopted conditionally activated molecules with the objective of reducing systemic toxicity. Amongst these are conditionally activated antibodies, such as PROBODY® activatable therapeutics (Pb-Tx), engineered to be proteolytically activated by proteases found locally in the tumor microenvironment (TME). These PROBODY® therapeutics molecules have shown potential as PD-L1 checkpoint inhibitors in several cancer types, including both effectiveness and locality of action of the molecule as shown by several clinical trials and imaging studies.

View Article and Find Full Text PDF

Patients with metastatic triple-negative breast cancer (TNBC) show variable responses to PD-1 inhibition. Efficient patient selection by predictive biomarkers would be desirable, but is hindered by the limited performance of existing biomarkers. Here, we leveraged in-silico patient cohorts generated using a quantitative systems pharmacology model of metastatic TNBC, informed by transcriptomic and clinical data, to explore potential ways to improve patient selection.

View Article and Find Full Text PDF

Immune checkpoint inhibitors remained the standard-of-care treatment for advanced non-small cell lung cancer (NSCLC) for the past decade. In unselected patients, anti-PD-(L)1 monotherapy achieved an overall response rate of about 20%. In this analysis, we developed a pharmacokinetic and pharmacodynamic module for our previously calibrated quantitative systems pharmacology model (QSP) to simulate the effectiveness of macrophage-targeted therapies in combination with PD-L1 inhibition in advanced NSCLC.

View Article and Find Full Text PDF

The tumor microenvironment is widely recognized for its central role in driving cancer progression and influencing prognostic outcomes. There have been increasing efforts dedicated to characterizing this complex and heterogeneous environment, including developing potential prognostic tools by leveraging modern deep learning methods. However, the identification of generalizable data-driven biomarkers has been limited, in part due to the inability to interpret the complex, black-box predictions made by these models.

View Article and Find Full Text PDF

Chemokinostatin-1 (CKS1) is a 24-mer peptide originally discovered as an anti-angiogenic peptide derived from the CXCL1 chemokine. Here, we demonstrate that CKS1 acts not only as an anti-angiogenic peptide but also as an oncolytic peptide due to its structural and physical properties. CKS1 induced both necrotic and apoptotic cell death specifically in cancer cells while showing minimal toxicity in non-cancerous cells.

View Article and Find Full Text PDF

Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data.

View Article and Find Full Text PDF

Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.

View Article and Find Full Text PDF

Several signaling pathways are activated during hypoxia to promote angiogenesis, leading to endothelial cell patterning, interaction, and downstream signaling. Understanding the mechanistic signaling differences between endothelial cells under normoxia and hypoxia and their response to different stimuli can guide therapies to modulate angiogenesis. We present a novel mechanistic model of interacting endothelial cells, including the main pathways involved in angiogenesis.

View Article and Find Full Text PDF

Red blood cell (RBC) aging manifests through progressive changes in cell morphology, rigidity, and expression of membrane proteins. To maintain the quality of circulating blood, splenic macrophages detect the biochemical signals and biophysical changes of RBCs and selectively clear them through erythrophagocytosis. In sickle cell disease (SCD), RBCs display alterations affecting their interaction with macrophages, leading to aberrant phagocytosis that may cause life-threatening spleen sequestration crises.

View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) is known for its aggressiveness and lack of effective treatments, leading researchers to search for new therapeutic targets by studying the tumor microenvironment (TME).* -
  • By analyzing imaging mass cytometry data from 58 TNBC patient samples, distinct patterns in cell distribution were found, revealing important links between tumor characteristics, immune factors, and patient survival.* -
  • Using machine learning on engineered spatial data, researchers achieved a predictive accuracy of 0.71 for patient treatment responses based on TME features, highlighting the potential of using TME architecture as a basis for new treatment strategies in TNBC.*
View Article and Find Full Text PDF

Conditionally activated molecules, such as Probody therapeutics (PbTx), have recently been investigated to improve antitumoral response while reducing systemic toxicity. PbTx are engineered to be proteolytically activated by proteases that are preferentially active locally in the tumor microenvironment (TME). Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for other drugs, to evaluate the effectiveness and targeting specificity of an anti-PD-L1 PbTx compared to the non-modified antibody.

View Article and Find Full Text PDF

Inflammatory cytokine mediated responses are important in the development of many diseases that are associated with angiogenesis. Targeting angiogenesis as a prominent strategy has shown limited effects in many contexts such as cardiovascular diseases and cancer. One potential reason for the unsuccessful outcome is the mutual dependent role between inflammation and angiogenesis.

View Article and Find Full Text PDF