98%
921
2 minutes
20
Dysregulated angiogenesis signaling leads to pathological vascular growth and leakage, and is a hallmark of many diseases including cancer and ocular diseases. In peripheral arterial disease, the concomitant increase in vascular permeability presents significant challenges in therapeutic efforts to improve perfusion by stimulating vascular growth. Building a mechanistic understanding of the endothelial control of vascular growth and permeability signaling is crucial to guide our efforts to identify therapeutic strategies that permit blood vessel growth while maintaining vascular stability. We develop a mechanistic systems biology model of the endothelial signaling network formed by the vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-Tie pathways, two major signaling pathways regulating vascular growth and stability. Our model, calibrated and validated against experimental data, reveals the mechanisms through which chronic Ang1 stimulation protects endothelial cells from VEGF-induced hyperpermeability, and predicts that combining Src inhibition with Tie2 activation can inhibit vascular leakage without disturbing angiogenesis signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148613 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.112625 | DOI Listing |
PLoS Comput Biol
September 2025
Program of Computational Sciences, Bard College, Annandale-on-Hudson, New York, United States of America.
Agent-based models (ABMs) have become essential tools for simulating complex biological, ecological, and social systems where emergent behaviors arise from the interactions among individual agents. Quantifying uncertainty through global sensitivity analysis is crucial for assessing the robustness and reliability of ABM predictions. However, most global sensitivity methods demand substantial computational resources, making them impractical for highly complex models.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2025
Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA.
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are inflammatory conditions with substantial rates of morbidity and mortality, but no effective treatments. The lack of effective treatments and unacceptably high mortality rates for ARDS are partly due to an incomplete understanding of the mechanisms that control ALI/ARDS and subsequent vascular repair. Transforming growth factors (TGFs) are a class of growth factors that regulate the vascular response to inflammation, including migration, proliferation, and differentiation of cells comprising the lung vasculature.
View Article and Find Full Text PDFAm J Dermatopathol
September 2025
Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.
Background: Dermatologic adverse events (dAEs) are prevalent with BCR-ABL tyrosine kinase inhibitors (TKIs), affecting quality of life and treatment adherence. Despite their prevalence, underlying mechanisms of toxicity remain unclear. We sought to characterize dAEs across TKI generations to elucidate mechanisms driving toxicities.
View Article and Find Full Text PDFNephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
J Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, Hebei Engineering University Affiliated Hospital, Handan, Hebei, China.
Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.
View Article and Find Full Text PDF