J Phys Chem C Nanomater Interfaces
February 2025
Despite extensive research on MgO's reactivity in the presence of CO under various conditions, little is known about whether impurities incorporated into the solid, such as iron, enhance or impede hydroxylation and carbonation reactions. The purity of the MgO required for the successful implementation of MgO looping as a direct air capture technology affects the deployment costs. With this motivation, we tested how incorporated iron impacts MgO (100) reactivity and passivation layer formation under ambient conditions by using atomic force microscopy, electron microscopy, and synchrotron-based X-ray scattering.
View Article and Find Full Text PDFRecent advancements in the electrochemical urea oxidation reaction (UOR) present promising avenues for wastewater remediation and energy recovery. Despite progress toward optimized efficiency, hurdles persist in steering oxidation products away from environmentally unfriendly products, mostly due to a lack of understanding of structure-selectivity relationships. In this study, the UOR performance of Ni and Cu double hydroxides, which show marked differences in their reactivity and selectivity is evaluated.
View Article and Find Full Text PDFEnviron Sci Technol
October 2023
It has been proposed to use magnesium oxide (MgO) to separate carbon dioxide directly from the atmosphere at the gigaton level. We show experimental results on MgO single crystals reacting with the atmosphere for longer (decades) and shorter (days to months) periods with the goal of gauging reaction rates. Here, we find a substantial slowdown of an initially fast reaction as a result of mineral armoring by reaction products (surface passivation).
View Article and Find Full Text PDFStabilizing cubic polymorph of LiLaZrO at low temperatures is challenging and currently limited to mono- or dual-ion doping with aliovalent ions. Herein, a high-entropy strategy at the Zr sites was deployed to stabilize the cubic phase and lower the lithium diffusion activation energy, evident from the static Li and MAS Li NMR spectra.
View Article and Find Full Text PDFSkyrmions hold great promise for low-energy consumption and stable high density information storage, and stabilization of the skyrmion lattice (SkX) phase at or above room temperature is greatly desired for practical use. The topological Hall effect can be used to identify candidate systems above room temperature, a challenging regime for direct observation by Lorentz electron microscopy. Atomically ordered FeGe thin films are grown epitaxially on Ge(111) substrates with ~ 4 % tensile strain.
View Article and Find Full Text PDFHigh-capacity metal oxide conversion anodes for lithium-ion batteries (LIBs) are primarily limited by their poor reversibility and cycling stability. In this study, a promising approach has been developed to improve the electrochemical performance of a MoO anode by direct fluorination of the prelithiated MoO . The fluorinated anode contains a mixture of crystalline MoO and amorphous molybdenum oxyfluoride phases, as determined from a suite of characterization methods including X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, and scanning transmission electron microscopy.
View Article and Find Full Text PDFIn this Letter, we used fluorescence microscopy to image the reversible transformation of individual CsPbCl nanocrystals to CsPbBr, which enables us to quantify heterogeneity in reactivity among hundreds of nanocrystals prepared within the same batch. We observed a wide distribution of waiting times for individual nanocrystals to react as has been seen previously for cation exchange and ion intercalation. However, a significant difference for this reaction is that the switching times for changes in fluorescence intensity are dependent on the concentration of substitutional halide ions in solution (i.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2020
Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room-temperature FMI is achieved in ultrathin LaBaMnO films grown on SrTiO substrates via an interface proximity effect.
View Article and Find Full Text PDFTo evaluate the role of planar defects in lead-halide perovskites-cheap, versatile semiconducting materials-it is critical to examine their structure, including defects, at the atomic scale and develop a detailed understanding of their impact on electronic properties. In this study, postsynthesis nanocrystal fusion, aberration-corrected scanning transmission electron microscopy, and first-principles calculations are combined to study the nature of different planar defects formed in CsPbBr nanocrystals. Two types of prevalent planar defects from atomic resolution imaging are observed: previously unreported Br-rich [001](210)∑5 grain boundaries (GBs) and Ruddlesden-Popper (RP) planar faults.
View Article and Find Full Text PDFThe Si-compatibility of perovskite heterostructures offers the intriguing possibility of producing oxide-based quantum well (QW) optoelectronic devices for use in Si photonics. While the SrTiO/LaAlO (STO/LAO) system has been studied extensively in the hopes of using the interfacial two-dimensional electron gas in Si-integrated electronics, the potential to exploit its giant 2.4 eV conduction band offset in oxide-based QW optoelectronic devices has so far been largely ignored.
View Article and Find Full Text PDFSemiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion.
View Article and Find Full Text PDFThe recent discovery of "polar metals" with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2/2 superlattice made of two centrosymmetric metallic oxides, La_{0.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2017
Strong electronic correlations, interfaces, and defects, and disorder each individually challenge the theoretical methods for predictions of materials properties. These challenges are all simultaneously present in complex transition-metal-oxide interfaces and superlattices, which are known to exhibit unique and unusual properties caused by multiple coupled degrees of freedom and strong electronic correlations. Here we show that ab initio quantum Monte Carlo (QMC) solutions of the many-electron problem are now possible for the full complexity of these systems.
View Article and Find Full Text PDFStructural defects often dominate the electronic- and thermal-transport properties of thermoelectric (TE) materials and are thus a central ingredient for improving their performance. However, understanding the relationship between TE performance and the disordered atomic defects that are generally inherent in nanostructured alloys remains a challenge. Herein, the use of scanning transmission electron microscopy to visualize atomic defects directly is described and disordered atomic-scale defects are demonstrated to be responsible for the enhancement of TE performance in nanostructured Ti Hf NiSn Sb half-Heusler alloys.
View Article and Find Full Text PDFSingle crystals of the van der Waals layered ferrielectric material CuInPS spontaneously phase separate when synthesized with Cu deficiency. Here we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInPS) and paraelectric (InPS) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient CuInPS forms a single phase at high temperature.
View Article and Find Full Text PDFVacancy dynamics and ordering underpin the electrochemical functionality of complex oxides and strongly couple to their physical properties. In the field of the epitaxial thin films, where connection between chemistry and film properties can be most clearly revealed, the effects related to oxygen vacancies are attracting increasing attention. In this article, we report a direct, real-time, atomic level observation of the formation of oxygen vacancies in the epitaxial LaCoO thin films and heterostructures under the influence of the electron beam utilizing scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFOctahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this paper, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts.
View Article and Find Full Text PDFSupported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst.
View Article and Find Full Text PDFA wealth of fascinating phenomena have been discovered at the BiFeO domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO films.
View Article and Find Full Text PDFFor epitaxial films, a critical thickness (t) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the t in BiFeO thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO/SrRuO/SrTiO substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer.
View Article and Find Full Text PDFThe identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeO materials prepared via co-precipitation and deposition precipitation methods.
View Article and Find Full Text PDFThe highly energetic electron beam (e-beam) in a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from knock-on and atomic movement, to amorphization/crystallization, and to localized chemical/electrochemical reactions. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional STEM e-beam rastering modes that allow only for uniform e-beam exposures. Here, an automated liquid phase nanolithography method has been developed that enables the direct writing of nanometer scaled features within microfabricated liquid cells.
View Article and Find Full Text PDFEnabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods.
View Article and Find Full Text PDF