13 results match your criteria: "MIT Center for Neurobiological Engineering[Affiliation]"
Sci Transl Med
January 2024
Media Arts and Sciences, MIT, Cambridge, MA 02115, USA.
Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens.
View Article and Find Full Text PDFHum Mol Genet
September 2023
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
De novo heterozygous loss-of-function mutations in phosphatase and tensin homolog (PTEN) are strongly associated with autism spectrum disorders; however, it is unclear how heterozygous mutations in this gene affect different cell types during human brain development and how these effects vary across individuals. Here, we used human cortical organoids from different donors to identify cell-type specific developmental events that are affected by heterozygous mutations in PTEN. We profiled individual organoids by single-cell RNA-seq, proteomics and spatial transcriptomics and revealed abnormalities in developmental timing in human outer radial glia progenitors and deep-layer cortical projection neurons, which varied with the donor genetic background.
View Article and Find Full Text PDFNat Biomed Eng
September 2022
MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
Nature
February 2022
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals.
View Article and Find Full Text PDFNat Nanotechnol
June 2021
McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
Expansion microscopy (ExM) physically magnifies biological specimens to enable nanoscale-resolution imaging using conventional microscopes. Current ExM methods permeate specimens with free-radical-chain-growth-polymerized polyacrylate hydrogels, whose network structure limits the local isotropy of expansion as well as the preservation of morphology and shape at the nanoscale. Here we report that ExM is possible using hydrogels that have a more homogeneous network structure, assembled via non-radical terminal linking of tetrahedral monomers.
View Article and Find Full Text PDFNeuron
August 2020
The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGo
Nature
October 2019
Department of Biomedical Engineering, Boston University, Boston, MA, USA.
A longstanding goal in neuroscience has been to image membrane voltage across a population of individual neurons in an awake, behaving mammal. Here we describe a genetically encoded fluorescent voltage indicator, SomArchon, which exhibits millisecond response times and is compatible with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, and number of neurons observable several-fold over previously published fully genetically encoded reagents. Under conventional one-photon microscopy, SomArchon enables the routine population analysis of around 13 neurons at once, in multiple brain regions (cortex, hippocampus, and striatum) of head-fixed, awake, behaving mice.
View Article and Find Full Text PDFScience
January 2019
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire brain.
View Article and Find Full Text PDFNat Chem Biol
September 2018
Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
In the version of this article originally published, the bottom of Figure 4f,g was partially truncated in the PDF. The error has been corrected in the PDF version of this article.
View Article and Find Full Text PDFNat Chem Biol
April 2018
Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
We developed a new way to engineer complex proteins toward multidimensional specifications using a simple, yet scalable, directed evolution strategy. By robotically picking mammalian cells that were identified, under a microscope, as expressing proteins that simultaneously exhibit several specific properties, we can screen hundreds of thousands of proteins in a library in just a few hours, evaluating each along multiple performance axes. To demonstrate the power of this approach, we created a genetically encoded fluorescent voltage indicator, simultaneously optimizing its brightness and membrane localization using our microscopy-guided cell-picking strategy.
View Article and Find Full Text PDFLight Sci Appl
May 2017
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two- and three-photon microscopy. Excitation of chromophores as diverse as channelrhodopsins and quantum dots is shown, and a penetration depth of more than 700 μm into fixed scattering brain tissue is achieved, approximately twice as deep as that achieved using two-photon wide-field excitation. Compatibility with live animal experiments is confirmed by imaging the cerebral vasculature of an anesthetized mouse; a complete focal stack was obtained without any evidence of photodamage.
View Article and Find Full Text PDFBiophys J
November 2017
Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York. Electronic address:
Several series of near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial phytochromes but were not systematically compared in neurons. To fluoresce, NIR FPs utilize an enzymatic derivative of heme, the linear tetrapyrrole biliverdin, as a chromophore whose level in neurons is poorly studied. Here, we evaluated NIR FPs of the iRFP protein family, which were reported to be the brightest in non-neuronal mammalian cells, in primary neuronal culture, in brain slices of mouse and monkey, and in mouse brain in vivo.
View Article and Find Full Text PDFNat Methods
March 2014
1] The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [3] MIT Center for Neurobiological Engineering, MIT, Cambridge, Massachusetts, USA. [4]
Optogenetic tools enable examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the study of how different synapses or pathways interact to encode information in the brain.
View Article and Find Full Text PDF