98%
921
2 minutes
20
The purpose of this study was to develop a submaximal repetitive isoinertial back muscle endurance test by defining the relationships between the power spectral indices of paraspinal muscle electromyographic (EMG) activities, endurance time and a subjective estimate of fatigue (Borg scale). Bilateral surface EMG recordings were obtained over the lumbar paraspinal muscles in ten individuals who were currently free from back pain. All subjects performed repetitive upper trunk extensions (25 degrees flexion and 5 degrees extension, 30 repetitions per min), while movement below the third lumbar vertebral body was mechanically restricted. The load level depended upon upper body mass, sex, and age. The tests continued for as long as the subjects were able to maintain the required repetition rate (endurance time). Median (MF) and mean power frequency (MPF) slopes were calculated by performing a fast Fourier transformation after confirmation of EMG stationarity by recurrence quantification analysis. MF and MPF correlations with endurance time/Borg scale were measured for the first 60 s (0.60-0.88/0.42-0.86), the first 90 s (0.62-0.89/0.52-0.90), the first 120 s (0.50-0.76/0.41-0.73), and the entire repetitive run (0.63-0.88/0.54-0.90). To test for the reproducibility of the spectral indices EMGs were recorded for 2 min during repetitive loading from the same subjects on two consecutive days. Corresponding spectral slopes of MF and MPF were correlated at 60 s (0.36-0.93), 90 s (0.58-0.92), and 120 s (0.70-0.94) at the L3-L4 and L5-S1 levels, indicating good reproducibility of results from alternate recording sessions at the L5-S1 level. It is concluded that paraspinal muscle spectral indices (MF and MPF) measured before the onset of total muscle fatigue are good predictors of endurance time and are closely related to the subjective perception of fatigue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004210050242 | DOI Listing |
Nucleic Acids Res
September 2025
Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States.
Glycine is an important metabolite and cell signal in diverse organisms, yet tools to visualize intracellular glycine dynamics have not been developed. In this study, diverse and bright RNA-based glycine biosensors were developed by fusing the architecturally complex glycine riboswitch with Broccoli class fluorogenic aptamers. The brightest sensor with the highest activation, glyS, and its two-dye ratiometric counterpart, Pepper-glyS, allowed for visualization of a drug-induced accumulation of endogenous glycine in live Escherichia colicells.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; Key Laboratory of Research and Transformation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Ministry of Education, Changsha 410007, China. Electronic address: mic
Ethnopharmacological Relevance: Primary dysmenorrhea (PD) is common and has a major impact on women's daily activities and quality of life. Wenjing Decoction (WD), a classic Chinese medicine formula, has been widely used for thousands of years in China to treat PD. However, the key pharmacodynamic substances in WD responsible for its anti-dysmenorrhea efficacy are still unclear.
View Article and Find Full Text PDFMar Environ Res
September 2025
Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.
Coastal zones are critical for the biogeochemical cycling of dissolved organic matter (DOM) in marine ecosystems, yet the relative importance of photochemical and microbial degradation in DOM transformation remains poorly understood due to complex hydrodynamics, diverse sources, and human activities. Through 14-day laboratory incubations, we investigated DOM transformation mechanisms from three common marine coastal space uses: port, mariculture and inshore areas adjacent to Yantai City. DOM characterization was performed using fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and UV-Vis spectroscopic indices.
View Article and Find Full Text PDFAppl Radiat Isot
September 2025
Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.
View Article and Find Full Text PDFSci Adv
September 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Narrow-linewidth lasers are essential for coherent optical applications, including communications, metrology, and sensing. Although compact semiconductor lasers with narrow linewidths have been demonstrated, achieving high spectral purity generally necessitates passive external cavities based on photonic integrated circuits. This study presents a theoretical and experimental demonstration of a monolithic optical injection locking topological interface state extended (MOIL-TISE) laser.
View Article and Find Full Text PDF