A bridge too far: Identification of bridge cell states as drivers of plasticity in neuroblastoma.

Dev Cell

Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding tumor cell plasticity, a potential mechanism driving therapeutic resistance in many cancers, represents a key oncologic challenge. In this issue of Developmental Cell, Xu et al. leverage neuroblastoma as a tractable model for exploring mechanisms of tumor plasticity and provide key insights into drivers of tumor cell states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2025.06.010DOI Listing

Publication Analysis

Top Keywords

cell states
8
tumor cell
8
bridge identification
4
identification bridge
4
cell
4
bridge cell
4
states drivers
4
drivers plasticity
4
plasticity neuroblastoma
4
neuroblastoma understanding
4

Similar Publications

Correction: Factors Affecting the Receptiveness of Chinese Internists and Surgeons Toward Artificial Intelligence-Driven Drug Prescription: Protocol for a Systematic Survey Study.

JMIR Res Protoc

September 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

[This corrects the article DOI: .].

View Article and Find Full Text PDF

Discovery of -(thiazol-2-yl) Furanamide Derivatives as Potent Orally Efficacious AR Antagonists with Low BBB Permeability.

J Med Chem

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.

View Article and Find Full Text PDF

Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.

Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).

View Article and Find Full Text PDF

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF