Optimization of carotid CT angiography image quality with deep learning image reconstruction with high setting (DLIR-H) algorithm under ultra-low radiation and contrast agent conditions.

Radiography (Lond)

Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Jiangsu Provincial Engineering Research Center for Medical Imaging and Digital Medicine, Xuzhou, Jiangs

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Carotid artery disease is a major cause of stroke and is frequently evaluated using Carotid CT Angiography (CTA). However, the associated radiation exposure and contrast agent use raise concerns, particularly for high-risk patients. Recent advances in Deep Learning Image Reconstruction (DLIR) offer new potential to enhance image quality under low-dose conditions. This study aimed to evaluate the effectiveness of the DLIR-H algorithm in improving image quality of 40 keV Virtual Monoenergetic Images (VMI) in dual-energy CTA (DE-CTA) while minimizing radiation dose and contrast agent usage.

Methods: A total of 120 patients undergoing DE-CTA were prospectively divided into four groups: one control group using ASIR-V and three experimental groups using DLIR-L, DLIR-M, and DLIR-H algorithms. All scans employed a "triple-low" protocol-low radiation, low contrast volume, and low injection rate. Objective image quality was assessed via CT values, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Subjective image quality was evaluated using a 5-point Likert scale.

Results: The DLIR-H group showed the greatest improvements in image quality, with significantly reduced noise and increased SNR and CNR, particularly at complex vascular sites such as the carotid bifurcation and internal carotid artery. Radiation dose and contrast volume were reduced by 15.6 % and 17.5 %, respectively. DLIR-H also received the highest subjective image quality scores.

Conclusion: DLIR-H significantly enhances DE-CTA image quality under ultra-low-dose conditions, preserving diagnostic detail while reducing patient risk.

Implications For Practitioners: DLIR-H supports safer and more effective carotid imaging, especially for high-risk groups like renal-impaired patients and those needing repeated scans, enabling wider clinical use of ultra-low-dose protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radi.2025.103154DOI Listing

Publication Analysis

Top Keywords

image quality
32
contrast agent
12
image
11
carotid angiography
8
quality
8
deep learning
8
learning image
8
image reconstruction
8
dlir-h algorithm
8
carotid artery
8

Similar Publications

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Rotator cuff tendinopathy is a common cause of shoulder pain and dysfunction, presenting in two primary forms: calcific and non-calcific. These subtypes differ significantly in their pathophysiology, clinical manifestations, and natural history, necessitating tailored diagnostic and therapeutic approaches. This review delineates the clinical presentations of calcific rotator cuff tendinopathy (RCCT), characterized by distinct pre-calcific, calcific, and post-calcific stages, and contrasts them with the more insidious, degenerative course of non-calcific rotator cuff tendinopathy.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF

Digital twins in nuclear medicine: A proposition of a modular pipeline for dosimetry protocol optimization in molecular radiotherapy.

Comput Struct Biotechnol J

August 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.

View Article and Find Full Text PDF

Background: The use of artificial intelligence platforms by medical residents as an educational resource is increasing. Within orthopaedic surgery, older Chat Generative Pre-trained Transformer (ChatGPT) models performed worse than resident physicians on practice examinations and rarely answered questions with images correctly. The newer ChatGPT-4o was designed to improve these deficiencies but has not been evaluated.

View Article and Find Full Text PDF