Exploring Bacterial Interactions Under the Stress Gradient Hypothesis in Response to Selenium Stress.

Environ Microbiol Rep

Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA.

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Stress Gradient Hypothesis (SGH) predicts that interspecific interactions shift from competition under low stress to facilitation under high stress. Historically, this framework has been extensively studied in plants, but its application to microbial communities remains underexplored. Here, we review literature to examine bacterial interactions under heavy metal stress, using selenium (Se) stress as a model for heavy metal-induced environmental pressures. Se, a naturally occurring and anthropogenic metalloid contaminant, provides oxidative stress on bacteria, which will modify competitive and facilitative behaviours under the SGH framework. At low Se concentrations, bacterial interactions are predominantly competitive, driven by resource competition and antimicrobial strategies. However, as Se stress increases, we predict facilitative interactions to increase, including detoxification mechanisms that reduce toxicity for Se intolerant species. We discuss methodologies to measure bacterial competition and facilitation, propose experimental approaches to identify the transition between these interaction modes, and explore the implications of species richness in microbial stress resilience. Understanding these interactions provides insights into microbial ecology, biogeochemical cycling and potential applications in bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1758-2229.70191DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413402PMC

Publication Analysis

Top Keywords

bacterial interactions
12
stress
10
stress gradient
8
gradient hypothesis
8
selenium stress
8
interactions
6
exploring bacterial
4
interactions stress
4
hypothesis response
4
response selenium
4

Similar Publications

Genital microbiota in infertile couples.

Reprod Biomed Online

May 2025

Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, University Hospital of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. Electronic address:

Research Question: What is the composition of bacterial communities at various genital sites and are there potential interactions between partners' microbiota?

Design: This observational study involved metagenomic analyses of samples collected from male and female partners of couples undergoing fertility treatment. Samples included vaginal and penile swabs, as well as follicular fluid and semen, which were analysed using next-generation sequencing.

Results: The bacterial community profiles of different genital tract niches were distinct, niche-specific compositions, with female samples predominantly featuring Lactobacillus species and male samples displaying greater microbial diversity, including genital-specific and skin-associated taxa.

View Article and Find Full Text PDF

Untangling metabolic interactions of a nongrowing, hydrogen producing synthetic coculture through a multispecies metabolic flux analysis.

Bioresour Technol

September 2025

Bioengineering Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico. Electronic address:

In this study a methodology to elucidate metabolic interactions that enhance hydrogen (H) production in cocultures under nongrowing conditions is presented. Core metabolic models of Rhodopseudomonas palustris and Clostridium butyricum were integrated to perform a multispecies metabolic flux analysis (mMFA), constrained by experimentally measured yields. Flux distributions were clustered, and thermodynamically favorable solutions were identified.

View Article and Find Full Text PDF

Chitosan-Based Photothermal Hydrogel with Rapid Bacterial Capture for Enhanced Disinfection.

Int J Biol Macromol

September 2025

Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China. Electronic address:

Constructing a novel antibacterial platform is of great significance for inhibiting bacterial infections. In this work, we developed a composite hydrogel (CS/PPy/PDA hydrogel) by incorporating photothermal material polypyrrole (PPy), chitosan (CS) and polydopamine (PDA) into poly acrylamide (PAAM) hydrogel network. First, CS/PPy/PDA hydrogel could capture bacteria through strong electrostatic interactions, enhancing the contact between hydrogels and bacteria.

View Article and Find Full Text PDF

Lung virome convergence precedes hospital-acquired pneumonia in intubated critically ill patients.

Cell Rep Med

August 2025

GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, Team VirPath, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France; Laboratoire de Viro

Hospital-acquired pneumonia (HAP) is one of the most common nosocomial infections, leading to significant morbidity and mortality in critically ill patients. HAP is previously associated with dysbiosis of the microbiota. However, the composition of the lung virome and its role in HAP pathogenesis remain unclear.

View Article and Find Full Text PDF

How nutrients and antibiotics shape microbial network patterns: Comparative insights from Erhai Lake bays.

Ecotoxicol Environ Saf

September 2025

Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of Eco-security, Yunnan University, Kunming 650091, China.

Freshwater lakes are increasingly subject to simultaneous nutrient enrichment and antibiotic pollution, yet the joint effects of these stressors on microbial network structure remain poorly characterized. This study examined the combined effects of nutrients and antibiotics on bacterial communities across eight bays in Erhai Lake, which were classified into high-, moderate-, and low-pollution zones. High-pollution bays (Haichao, Dongsha, and Shuanglang) recorded the region's highest nutrient concentrations, with chemical oxygen demand reaching 33.

View Article and Find Full Text PDF