98%
921
2 minutes
20
Objective: This review aims to explore advanced nanotechnology-integrated delivery systems designed to facilitate the transport of therapeutic agents across the blood-brain barrier (BBB) for the treatment of central nervous system (CNS) disorders, particularly neurodegenerative diseases.Significance:CNS disorders remain a primary global health concern due to their progressive nature and limited treatment options. Conventional therapies exhibit minimal efficacy, primarily due to the restrictive nature of the BBB, which impedes drug access to brain tissue. Overcoming this barrier is crucial to improving therapeutic outcomes and minimizing systemic side effects.
Methods: A comprehensive analysis of nanotechnology-based approaches was conducted, focusing on the physicochemical properties of nanocarriers, their interactions with the BBB, and their roles in targeted drug delivery. Strategies involving nanoparticle engineering, ligand-functionalized systems, and gene delivery vectors were critically reviewed.
Results: Nanotechnology has shown considerable promise in facilitating drug delivery across the BBB. Nano-engineered platforms are capable of targeting specific cells, modulating signaling pathways, enhancing neuronal survival, and even inducing regeneration. Various successful nanocarriers, including liposomes, dendrimers, polymeric nanoparticles, and exosomes, demonstrate enhanced drug penetration and specificity.
Conclusions: Nanotechnology holds transformative potential in treating CNS disorders by addressing the limitations posed by the BBB. Continued research into the design and optimization of brain-targeted nano-systems holds the key to safer, more effective therapies. The manuscript also highlights current challenges and considerations in developing such delivery systems for clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03639045.2025.2555858 | DOI Listing |
JMIR Cancer
September 2025
iCARE Secure Data Environment & Digital Collaboration Space, NIHR Imperial Biomedical Research Centre, London, United Kingdom.
Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.
View Article and Find Full Text PDFJ Med Chem
September 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.
View Article and Find Full Text PDFPol Merkur Lekarski
September 2025
SHUPIK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE.
Objective: Aim: To analyse the effectiveness of the National Health Service of Ukraine, which performs the functions of a purchaser of medical services and medicines under the Medical Guarantees Programme during wartime, as well as to identify and characterise the key challenges it faces and to propose effective solutions based on statistical data and comparative analysis concerning the provision of high-quality and effective medical care to the population, along with suggesting the development of promising directions for improving the performance of the National Health Service..
Patients And Methods: Materials and Methods: Retrospective, analytical, and modelling methods were used to assess the main processes related to the activities of the National Health Service of Ukraine as a key actor in the financing of medical services within the healthcare system under martial law conditions in Ukraine.
Epidemiol Serv Saude
September 2025
Universidade de Brasília, Faculdade de Ciências e Tecnologias em Saúde, Brasília, DF, Brazil.
Objective: Systematize the methodological decisions adopted in the budget impact analyses of the recommendation reports of the National Commission for the Incorporation of Technologies into the Unified Health System (Conitec) regarding drugs incorporated into the SUS (Brazilian Unified Health System) in the period from 2012 to 2024.
Methods: This is an exploratory, descriptive, retrospective study, based on document analysis of Conitec's technical recommendation reports with decisions on the incorporation of drugs published up to 2024. Information from the Budget Impact Analyses (BIA) was extracted and presented in terms of percentage, median and interquartile range.
Nano Lett
September 2025
Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.
View Article and Find Full Text PDF