Real-Time Optical and Acoustic Characterization of Phase-Shift Droplets for Drug-Delivery Applications.

ACS Appl Mater Interfaces

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-5667, United States.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase-shift droplets undergoing acoustic droplet vaporization (ADV) offer a promising approach for ultrasound-mediated drug delivery, enabling the spatiotemporally controlled release of therapeutic payloads. A comprehensive understanding of their behavior, through both optical and acoustic methods, is essential for optimizing the therapeutic efficacy. In this study, we investigated the effects of driving pressure, pulse duration, and bulk boiling point of perfluorocarbon droplets on ADV dynamics, payload release, and acoustic emissions. We employed ultra-high-speed brightfield [10 million frames per second (Mfps)], fluorescence (2 Mfps), and confocal microscopy (1 fps) to capture ADV and real-time payload release in fibrin-based hydrogels. During ADV, payload release velocities reached 2-4 m/s, slowing to 0.6-2.7 μm/s post ultrasound. While the cycle number and pressure affected early bubble expansion and acoustic output, long-term bubble behavior and release kinetics were governed by the droplet's thermophysical properties. Ultra-high-speed imaging revealed a direct coupling between bubble dynamics and payload release during ultrasound exposure, with release continuing via diffusion after ultrasound. Notably, payload release rates post-ultrasound exceeded bubble growth rates. Additionally, acoustic emissions, recorded via passive cavitation detection, increased with both pressure and pulse number but decreased in droplets with higher bulk boiling points. These findings underscore the importance of integrating multimodal imaging methods to elucidate ADV mechanisms and design effective hydrogel-based drug-delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c11300DOI Listing

Publication Analysis

Top Keywords

payload release
20
optical acoustic
8
phase-shift droplets
8
release
8
pressure pulse
8
bulk boiling
8
dynamics payload
8
acoustic emissions
8
acoustic
6
adv
5

Similar Publications

Calcium/Manganese Nanoreactors Enable Triple-Enhanced Chemodynamic/Photodynamic Therapy via Tumor Microenvironment Reprogramming.

ACS Appl Mater Interfaces

September 2025

MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, No.55 West Zhongshan Avenue, Tianhe District, Guangzhou 510631, Guangdong, China.

While reactive oxygen species (ROS)-dependent chemodynamic therapy (CDT) and photodynamic therapy (PDT) hold promise for cancer treatment, their efficacy remains constrained by tumor microenvironment (TME) barriers: glutathione (GSH) overexpression, insufficient HO supply, and hypoxia. To address these limitations, we engineered a Trojan horse-inspired MnO-shelled CaO nanoreactor (CaO/MnO-Ce6-PEG) by employing a sequential TME reprogramming strategy, triggering a cascading ROS storm for enhanced CDT and PDT. The outer MnO layer first depletes GSH through redox conversion, exposing the CaO core hydrolysis, and subsequently providing HO for CDT and O for ameliorating hypoxia to boost Ce6-mediated PDT.

View Article and Find Full Text PDF

Polysaccharide copolymeric conjugates and their applications in targeted cancer therapy.

Int J Biol Macromol

September 2025

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India. Electronic address:

Polysaccharide copolymers Conjuates have surfaced as a versatile foundation in the development of advanced smart drug delivery systems, owing to their inherent biocompatibility, biodegradability, and capacity for chemical modification. This review brings into focus the recent advances in co-polymeric drug delivery systems based on naturally occurring polysaccharides like chitosan, alginate, dextran, hyaluronic acid, pullulan, guar gum, xanthan gum, agarose, gellan gum, and starch. Their structural malleability and functionalization capabilities are emphasized to engineer therapeutic payload stability, bioavailability, and controlled release.

View Article and Find Full Text PDF

Regulated release of small extracellular vesicles directs neutrophil recruitment in cutaneous wound healing.

J Invest Dermatol

September 2025

Department of Surgery, University of California San Diego, La Jolla, CA, United States; Department of Dermatology, University of California San Diego, La Jolla, CA, United States. Electronic address:

Normal cutaneous wound healing is a multicellular process that involves the release of small extracellular vesicles (sEVs) that coordinate intercellular communication by delivery of sEV payloads to recipient cells. We have recently shown how the pro-reparative activity of inflammatory cell sEVs, especially macrophage and neutrophil-derived sEVs, in the wound bed is dysregulated in impaired wound healing. Here we show that loss of Rab27A, a small GTPase that has a regulatory function in sEV secretion, reduces the release of neutrophil and macrophage-derived sEVs.

View Article and Find Full Text PDF

Design of cathepsin-sensitive linkers for tumor-selective bioconjugate drug delivery.

J Control Release

September 2025

Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Cysteine cathepsin, particularly cathepsin B, have emerged as pivotal enzymatic targets in the design of drug delivery systems owing to their overexpression in diverse pathological conditions, most notably cancer. This review provides a comprehensive overview of cathepsin B-cleavable linkers, emphasizing their role in current bioconjugate design and their application across multiple therapeutic platforms. It also provides a comparative overview of linker engineering guided by cathepsin B, ranging from simple dipeptides constructs to modified peptide linkers.

View Article and Find Full Text PDF

Trastuzumab deruxtecan (T-DXd) is a HER2-targeting antibody-drug conjugate (ADC) with efficacy across adult cancers exhibiting variable HER2 expression. Prior studies demonstrating HER2 expression in osteosarcoma (OS) motivated a clinical trial of T-DXd in pediatric and adolescent/young adults with OS but was terminated early for inactivity. We evaluated the activity of T-DXd using OS patient-derived xenograft (PDX) models and found a 22% objective response rate despite no detectable HER2 expression across PDXs tested.

View Article and Find Full Text PDF