Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pediatric Huntington's disease (PHD), a rare and severe form of juvenile-onset Huntington's disease (JOHD), is associated with highly expanded CAG repeats in the gene and a rapidly progressive neurodegenerative course. Recent studies have suggested that glucose metabolism may be impaired in PHD due to reduced expression of glucose transporters in the brain, resembling aspects of GLUT1 Deficiency Syndrome (GLUT1DS).

Methods: We investigated glucose metabolism in two pediatric patients with genetically confirmed PHD (CAG repeats: 76 and 79) referred to our tertiary care center. Clinical, neuroimaging, and neuropsychological data were collected alongside metabolic assessments, including cerebrospinal fluid (CSF) and plasma glucose and lactate levels, CSF-to-serum glucose ratio, and red blood cell GLUT1 expression using the METAglut1 test. 18F-FDG PET imaging and brain MRI were performed to assess cerebral metabolism and structural changes.

Results: Both patients exhibited progressive motor and cognitive decline with dystonia-parkinsonian features, learning disabilities, and behavioral disturbances. Brain MRI showed caudate and putaminal atrophy, while PET imaging demonstrated severely reduced glucose uptake in the basal ganglia. CSF/plasma glucose ratios were within or near the lower end of the normal range (0.51 and 0.6), and GLUT1 expression in red blood cells was within normal limits. No significant biochemical alterations consistent with GLUT1DS were detected.

Conclusion: Our findings confirm localized cerebral hypometabolism in the basal ganglia of PHD patients, consistent with previous neuropathological reports. However, systemic biochemical indicators of glucose transport deficiency, including erythrocyte GLUT1 function and CSF glucose, were not significantly altered. While glucose dysregulation appears to be a feature of PHD brain pathology, our results do not support the use of metabolic interventions such as the ketogenic diet in the absence of confirmed GLUT1 dysfunction. Further studies in larger cohorts are warranted to better characterize the metabolic profile of PHD and guide therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406489PMC
http://dx.doi.org/10.3389/fneur.2025.1626275DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
12
huntington's disease
12
glucose
11
pediatric huntington's
8
cag repeats
8
red blood
8
glut1 expression
8
pet imaging
8
brain mri
8
basal ganglia
8

Similar Publications

PET/CT imaging of the late-gestation fetal brain in pregnant rats: A proof-of-concept study.

J Cereb Blood Flow Metab

September 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Preclinical PET studies offer the opportunity to elucidate molecular mechanisms underlying early neurodevelopment with minimal invasiveness. We demonstrated the feasibility of fetal brain PET in four pregnant rats ( = 42 fetuses). [F]FDG uptake in rat fetuses was readily visualized by PET imaging.

View Article and Find Full Text PDF

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF

Mendelian randomization studies on cardiometabolic factors and intracranial aneurysms: A systematic literature analysis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China.

Objectives: Intracranial aneurysm (IA) has an insidious onset, and once ruptured, it carries high rates of mortality and disability. Cardiometabolic factors may be associated with the formation and rupture of IA. This study aims to summarize the application of Mendelian randomization (MR) methods in research on cardiometabolic factors and IA, providing insights for further elucidation of IA etiology and pathogenesis.

View Article and Find Full Text PDF