Machine-Learning Potential Molecular Dynamics Reveals the Critical Role of Flexibility in Solid-Liquid Nanofluidic Friction.

ACS Nano

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The confining walls made by 2D materials are often considered solid boundary conditions in studies of fluid transport through nanochannels, while the atomically thin walls inherently exhibit thermal fluctuations at a finite temperature. In this work, we investigate the solid-liquid interfacial friction properties of water confined within flexible nanochannels using machine-learning-potential molecular dynamics. Surprisingly, we find that the friction coefficient (λ) increases with lateral size in the flexible nanochannels, following a linear relationship with 1/, which is absent in rigid channels. For thicker nanochannel walls with a large bending stiffness (), this size dependence weakens. This 1/ scaling resembles the size-dependent thermal fluctuation amplitude of 2D sheets, suggesting that λ can be well controlled by applying the mechanical strain to the channel walls via controlling the phonon modes associated with surface fluctuations. Further analysis reveals that the λ can be decomposed into the contribution from lattice roughness and the thermal-fluctuation-induced ripple of the 2D surface, where the second term scales with . These findings offer insights into the manipulation of nanoscale flow through precise control of local curvature and fluid-solid coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5c08363DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
flexible nanochannels
8
machine-learning potential
4
potential molecular
4
dynamics reveals
4
reveals critical
4
critical role
4
role flexibility
4
flexibility solid-liquid
4
solid-liquid nanofluidic
4

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Solvation Structure of Np in a Noncomplexing Environment.

Inorg Chem

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.

View Article and Find Full Text PDF

Hippophae salicifolia, commonly known as sea buckthorn, is native to the Indian Himalayan region. This study is the first to comprehensively assess the phytochemical profile and biological activities of H. salicifolia leaves extracted through maceration, infusion, and percolation (Soxhlet apparatus) methods.

View Article and Find Full Text PDF

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF