Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Predictive models in surgery promise to improve clinical care by anticipating complications, guiding decision-making, and supporting personalized treatment strategies. Although their potential to enhance outcomes and efficiency is substantial, their integration into clinical practice also raises profound ethical challenges.

Ethical Framework: These challenges span the entire lifecycle of predictive models from data collection and development to validation and clinical use. They touch upon patient privacy, algorithmic bias, transparency, and the shifting responsibilities of clinicians. Importantly, the ethical concerns are not isolated to one group but shared across patients, developers, and clinicians within a dynamic stakeholder relationship.

Analysis: Key risks include biased or unrepresentative datasets, privacy breaches, opaque decision-making processes, and the danger of deskilling surgeons if reliance on algorithms becomes excessive. To mitigate these risks, strategies, such as out-of-distribution detection, standardized data collection, parallel model development, and continuous auditing, are essential. Beyond technical safeguards, embedding predictive models within a framework of accountability and patient-centered care is necessary to sustain trust and equity.

Conclusion: The integration of predictive models into surgery requires more than technical excellence, and it demands ethical vigilance. Preparing future clinicians through education that emphasizes both clinical reasoning and ethical awareness is critical. By aligning predictive model development with human-centered values, healthcare systems can ensure that these innovations enhance surgical practice while safeguarding equity, transparency, and patient trust.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wjs.70080DOI Listing

Publication Analysis

Top Keywords

predictive models
20
models surgery
12
data collection
8
model development
8
predictive
6
ethical
5
models
5
ethical pitfalls
4
pitfalls ai-based
4
ai-based predictive
4

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Coronary heart disease (CHD) is a leading cause of morbidity and mortality; patients with type 2 diabetes mellitus (T2DM) are at particularly high risk, highlighting the need for reliable biomarkers for early detection and risk stratification. We investigated whether combining the stress hyperglycemia ratio (SHR) and systemic inflammation response index (SIRI) improves CHD detection in T2DM. In this retrospective cohort of 943 T2DM patients undergoing coronary angiography, associations of SHR and SIRI with CHD were evaluated using multivariable logistic regression and restricted cubic splines; robustness was examined with subgroup and sensitivity analyses.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF