98%
921
2 minutes
20
A primary concern for world health is the emergence of new infectious diseases. Conventional vaccine development techniques are time-consuming and often limited by issues such as antigen availability and safety concerns. Immunoinformatics, a computational approach that integrates immunology and informatics, presents a promising solution for accelerating vaccine design. Researchers can rapidly identify potential vaccine candidates by leveraging computational tools and databases, predict their immunogenicity and safety profiles, and optimize their design. This review explores immunoinformatics approaches for vaccine design and illustrates them through a case study on the Marburg virus. We highlight the tools and databases involved to expedite the vaccine development process and improve global health outcomes. The designed vaccine exhibited desirable physicochemical and biological interaction results. This review on the use of the immunoinformatics approach to enhance vaccine development against emerging infectious diseases provides an efficient first step in the vaccine development process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2025.152572 | DOI Listing |
Infect Immun
September 2025
National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.
View Article and Find Full Text PDFElife
September 2025
Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).
View Article and Find Full Text PDFInfluenza Other Respir Viruses
September 2025
World Health Organization Regional Office for Europe, Copenhagen, Denmark.
Background: Few studies have evaluated COVID-19 vaccine effectiveness (VE) in middle-income countries, particularly in eastern Europe. We aimed to estimate COVID-19 VE against SARS-CoV-2-confirmed hospitalizations and severe outcomes in Kosovo.
Methods: We conducted a test-negative case-control study using data from Kosovo's severe acute respiratory infection (SARI) sentinel surveillance system from January 2022 to June 2024.
Nat Med
September 2025
Rwanda Zambia Health Research Group, Center for Family Health Research/Project San Francisco, Kigali, Rwanda.
Risk of death for both mother and fetus following Ebola virus infection is extremely high. In this study, healthy women in Rwanda aged ≥18 years were randomized to two-dose Ebola vaccination (Ad26.ZEBOV, MVA-BN-Filo) during pregnancy (group A) or postpartum (group B).
View Article and Find Full Text PDF