98%
921
2 minutes
20
Dictionary learning, which approximates data samples by a set of shared atoms, is a fundamental task in representation learning. However, dictionary learning over graphs, namely graph dictionary learning (GDL), is much more challenging than vectorial data as graphs lie in disparate metric spaces. The sparse literature on GDL formulates the problem from the reconstructive view and often learns linear graph embeddings with a high computational cost. In this paper, we propose a Fused Gromov-Wasserstein (FGW) Mixture Model named FraMe to address the GDL problem from the generative view. Equipped with the graph generation function based on the radial basis function kernel and FGW distance, FraMe generates nonlinear embedding spaces, which, as we theoretically proved, provide a good approximation of the original graph spaces. A fast solution is further proposed on top of the expectation-maximization algorithm with guaranteed convergence. Extensive experiments demonstrate the effectiveness of the obtained node and graph embeddings, and our algorithm achieves significant improvements over the state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403051 | PMC |
Imaging Neurosci (Camb)
September 2025
Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
The study of individual differences in healthy controls can provide precise descriptions of individual brain activity. Following this direction, researchers have tried to identify a subject using their functional connectivity (FC) patterns computed by functional magnetic resonance imaging (fMRI) data of the brain. Currently, there is an emerging focus on investigating the identifiability over the temporal variability of the FC.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Electrical and Computer Engineering, Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA.
Electroencephalograms (EEGs) are time-series records of the electrical potential from collective neural activity in the brain. EEG waveform patterns-rhythmic and irregular oscillations and transient patterns of sharp waves or spikes-are potential phenotypical biomarkers, reflecting genotype-specific neural activity. This is especially relevant to diagnosing epilepsy without direct seizure observations, which is common in clinical settings, as well as in animal models, which often have subtle neurological phenotypes without overt epilepsy.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
Data integration is a powerful tool for facilitating a comprehensive and generalizable understanding of microbial communities and their association with outcomes of interest. However, integrating data sets from different studies remains a challenging problem because of severe batch effects, unobserved confounding variables, and high heterogeneity across data sets. We propose a new data integration method called MetaDICT, which initially estimates the batch effects by weighting methods in causal inference literature and then refines the estimation via novel shared dictionary learning.
View Article and Find Full Text PDFJ Med Internet Res
August 2025
Edson College of Nursing and Health Innovation, Arizona State University, 500 N 3rd St, Phoenix, Phoenix, AZ, 85004, United States, 1 (330) 272-4294.
Background: HIV remains a global challenge, with stigma, financial constraints, and psychosocial barriers preventing people living with HIV from accessing health care services, driving them to seek information and support on social media. Despite the growing role of digital platforms in health communication, existing research often narrowly focuses on specific HIV-related topics rather than offering a broader landscape of thematic patterns. In addition, much of the existing research lacks large-scale analysis and predominantly predates COVID-19 and the platform's transition to X (formerly known as Twitter), limiting our understanding of the comprehensive, dynamic, and postpandemic HIV-related discourse.
View Article and Find Full Text PDFSci Rep
August 2025
School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China.
Texture recognition underpins critical applications in industrial quality control, robotic manipulation, and biomedical imaging. Traditional deep dictionary learning methods for texture recognition often emphasize deep feature extraction. However, they tend to lose crucial features as model depth increases, which can reduce their overall effectiveness.
View Article and Find Full Text PDF