Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leveraging information entropy to quantitatively measure the organizational diversity and complexity of different chemical systems is a compelling need for next-generation supramolecular and systems chemistry. It can also be a strategy for digitalizing and enabling the bottom-up development of life-like complex systems following probable origin-of-life scenarios. According to the lipid world hypothesis, lipid molecules appear first to facilitate compartmentalization, catalysis, information processing, It is envisaged that fatty acid-based vesicles are more primitive than phospholipid vesicles. Herein, we decode the difference in information storage capability of a fatty acid (oleic acid, (OA)) and a phospholipid (1,2-dioleoyl--3-phosphocholine (DOPC)) vesicle by measuring vesicle-templated formation of nine different hydrazones through permutations and hierarchical ordering of combinatorial matrices involving three aldehydes and three hydrazines by determining Shannon entropy and the Gini coefficient at the systems level. This signifies a higher diversity and lower selectivity towards successful chemical reactions in OA vesicles, whereas DOPC vesicles are more selective and less diverse. Exploiting information theory in combinatorial supramolecular synthesis and unraveling information capacity relevant to cell membrane evolution will be important in understanding the information dynamicity of different transient and self-propagated synthetic and natural assembly processes over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402723PMC
http://dx.doi.org/10.1039/d5sc04365dDOI Listing

Publication Analysis

Top Keywords

fatty acid
8
acid phospholipid
8
phospholipid vesicles
8
ordering combinatorial
8
vesicles
5
decoding entropy
4
entropy fatty
4
vesicles ordering
4
combinatorial output
4
output hydrazones
4

Similar Publications

Efficient Production of Mano/Xylo-Oligosaccharides with Excellent Probiotic Activity through Coupling Catalysis.

J Agric Food Chem

September 2025

Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, C

This study develops a catalytic system using pyruvic acid (PYA) and Fe to efficiently coproduce xylo-oligosaccharides (XOS) and (manno-oligosaccharides) MOS from food material ( Lam. fruit.) and its waste peel, respectively.

View Article and Find Full Text PDF

Preparation and Characterization of Polysaccharides From Grifola frondosa and Their Human Intestinal Flora-modulating Effect.

Chem Biodivers

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.

A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.

View Article and Find Full Text PDF

Introduction: Cannabis use disorder (CUD) is a growing global health concern, with limited pharmacological treatments currently available despite increasing prevalence and legalization trends.

Areas Covered: This review explores the landscape of pharmacotherapies for CUD, including both repurposed agents and emerging investigational compounds. We summarize findings from recent systematic reviews and meta-analyses, with attention to mechanisms of action and clinical relevance.

View Article and Find Full Text PDF

Potential Role of the PGE2-EP4-Ca2+ Signaling Axis in Post-Traumatic Osteoarthritis.

J Vis Exp

August 2025

Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences;

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease triggered by trauma or intense mechanical stress, leading to joint cartilage degeneration and functional impairment. Prostaglandin E2 (PGE2) contributes significantly to cartilage degradation following mechanical injury by activating its receptor, Prostaglandin E receptor 4 (EP4), on chondrocyte membranes. The homeostasis of articular cartilage primarily relies on the dynamic balance between cartilage degradation and repair, a process finely regulated by chondrocytes.

View Article and Find Full Text PDF

Diverse biofilm-forming represent twelve novel species isolated from glaciers on the Tibetan Plateau.

Int J Syst Evol Microbiol

September 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.

The family , encompassing the genus and related taxa, comprises diverse Gram-negative, aerobic, rod-shaped bacteria found in varied habitats, including air, soil, water and glaciers. Recent genomic-based taxonomic revisions have reclassified some species into new genera, such as and , due to polyphyletic relationships within the family . Certain species are known for forming biofilms or functioning as aerobic anoxygenic phototrophic bacteria, traits that enhance resilience in extreme environments like the cryosphere.

View Article and Find Full Text PDF