98%
921
2 minutes
20
DNA nanotechnology, a cutting-edge field that constructs sophisticated DNA-based nanostructures by harnessing the unparalleled programmability of DNA, has evolved into a powerful tool for applications in therapy, biosensing, logic computation, and more. This review outlines the fundamental strategies for constructing DNA nanostructures, beginning with the design of basic building blocks such as small, symmetric tiles (e.g., DX and TX tiles, point star motifs, T-junctions), and extending to more complex, addressable scaffolds like DNA origami and single-stranded tile (SST) structures. Furthermore, it surveys extended arrays (1D/2D arrays, nanotubes, 3D crystals) formed through motif association, while introducing the computational potential of algorithmic self-assembly and the properties of DNA-based aggregates (hydrogels, liquid-liquid phase separation systems). The design and construction logic of DNA nanostructures, spanning from static to dynamic systems and from microscopic to macroscopic scales, is also elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.addr.2025.115679 | DOI Listing |
PNAS Nexus
September 2025
Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA.
DNA data storage is a promising alternative to conventional storage due to high density, low energy consumption, durability, and ease of replication. While information can be encoded into DNA via synthesis, high costs and the lack of rewriting capability limit its applications beyond archival storage. Emerging "hard drive" strategies seek to encode data onto universal DNA templates without de novo synthesis, using methods such as DNA nanostructures and base modifications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China.
Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China; Shanghai Key Laboratory of Cancer System Regulation and Clinical Translation, Jiading District Central Hospital, Renji Hospital J
DNA exhibits remarkable versatility, which is attributed to its inherent molecular recognition capabilities, programmable sequences, and excellent biocompatibility. Among its various topological forms, branched DNA (bDNA), including Y-shaped DNA (Y-DNA), X-shaped DNA (X-DNA), etc., stands out as a fundamental building block for fabricating functional DNA-based materials and has demonstrated great promise across diverse applications in recent years.
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2025
Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
The genome stores and processes approximately 1.5 gigabytes of encoded information. In this article, we propose that the eukaryotic genome and its adaptable three-dimensional packing in the form of chromatin offer a valuable template for the system architecture of DNA-based digital computers.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
Department of Chemistry, Purdue University, West Lafayette 47907, IN 47907, USA. Electronic address:
DNA nanotechnology, a cutting-edge field that constructs sophisticated DNA-based nanostructures by harnessing the unparalleled programmability of DNA, has evolved into a powerful tool for applications in therapy, biosensing, logic computation, and more. This review outlines the fundamental strategies for constructing DNA nanostructures, beginning with the design of basic building blocks such as small, symmetric tiles (e.g.
View Article and Find Full Text PDF