Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Older surgical patients present with diverse clinical profiles, yet research indicates a significant correlation between sarcopenia-related features and the incidence of perioperative neurocognitive disorder (PND). The integration of machine learning techniques offers a promising avenue for identifying older surgical patients at elevated risk of PND, particularly those exhibiting sarcopenia-associated characteristics. This approach enhances preoperative risk stratification and patient selection, thereby improving the precision of clinical management and treatment decisions.

Methods: Data were collected from patients undergoing non-cardiac surgery at the First Affiliated Hospital of Chengdu Medical College to develop and validate a predictive model. Five machine learning models-Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and Random Forest-were constructed to evaluate the risk of PND in older surgical patients. Sarcopenia-related features were incorporated as key variables in these models. The SHapley Additive exPlanations (SHAP) method was subsequently utilized to interpret the most effective model.

Results: A total of 443 patients were included in the study. Among the five models, AdaBoost performed best, achieving an AUC of 0.95. The six most important features identified by SHAP were 6-meter walking speed, preoperative MMSE score, maximum grip strength, appendicular skeletal muscle mass, and sarcopenia assessment age. These results demonstrate AdaBoost's excellent predictive performance, with high interpretability and reliability.

Conclusion: Machine learning models, particularly AdaBoost integrated with SHAP, show significant potential in predicting PND in older surgical patients. The model's ability to clarify the impact of sarcopenia-related features enhances its clinical utility in preoperative risk assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399672PMC
http://dx.doi.org/10.3389/fmed.2025.1604333DOI Listing

Publication Analysis

Top Keywords

machine learning
16
sarcopenia-related features
16
older surgical
16
surgical patients
16
perioperative neurocognitive
8
impact sarcopenia-related
8
risk pnd
8
preoperative risk
8
gradient boosting
8
pnd older
8

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF