Microbial Production of Purine Nucleotides, Nucleosides, and Nucleobases: Advances and Perspectives.

Biotechnol J

Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleotides are indispensable biomolecules, playing vital roles in genetic information transfer, energy metabolism, cofactor biosynthesis, and cellular communication. These compounds (including purine nucleotides, nucleosides, and nucleobases) have become increasingly valuable as foodstuff additives and pharmaceutical intermediates. Although microbial production offers an eco-friendly alternative, its efficiency remains constrained by complex metabolic networks and growth-production tradeoffs. Systems metabolic engineering has emerged as a powerful approach to optimize purine biosynthesis in microorganisms. This review provides a systematic synthesis of recent advances in microbial purine biosynthesis. First, a comprehensive analysis of purine biosynthetic pathways and their regulatory networks in industrial microorganisms are presented, along with a comparative evaluation of current metabolic engineering approaches. Second, systems metabolic engineering strategies for production enhancement are examined, focusing on multi-omics integration, metabolic flux analysis, genome-scale metabolic models, dynamic regulation, and high-throughput screening platforms. Finally, the major challenges confronting efficient microbial production of purine compounds are identified, with proposed strategies to overcome these limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.70115DOI Listing

Publication Analysis

Top Keywords

microbial production
12
metabolic engineering
12
production purine
8
purine nucleotides
8
nucleotides nucleosides
8
nucleosides nucleobases
8
systems metabolic
8
purine biosynthesis
8
purine
6
metabolic
6

Similar Publications

Microbial co-cultures provide significant advantages over commonly used axenic cultures in biotechnological processes, including increased productivity and access to novel natural products. However, differentiated quantification of the microorganisms in co-cultures remains challenging using conventional measurement techniques. To address this, a fluorescence-based approach was developed to enable the differentiated online monitoring of microbial growth in co-cultures.

View Article and Find Full Text PDF

Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF

Treatment of non-sterile biogas slurry from a pig farm using microalgae isolated from the activated sludge of sewage plants.

Microbiol Spectr

September 2025

Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.

Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.

View Article and Find Full Text PDF