Super-Enhancer-Mediated DLX5 Activation Defines Regulatory Mechanisms in Human Embryonic Stem Cell-Derived Osteoblasts.

Dev Growth Differ

Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Osteoblast differentiation is essential for skeletal development and homeostasis. Although bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) are commonly used to study osteoblast differentiation in the context of bone homeostasis, their relevance to osteoblast differentiation during human skeletal development remains unclear. To understand the regulatory mechanisms underlying osteoblast differentiation in a human developmental context, we performed Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) and RNA-seq analyses on osteoblasts isolated from an in vivo implantation system using induced sclerotome derived from Col2.3-GFP reporter human embryonic stem cells (hESCs). The resulting datasets revealed skeletal development-associated chromatin accessibility and transcriptional profiles. Comparative analysis with BM-MSC-derived osteoblasts revealed that hESC-derived osteoblasts were enriched for regulatory gene sets associated with ossification. Notably, we identified a super-enhancer associated with DLX5, a known osteoblast regulator, consisting of multiple cooperative enhancer elements to drive transcription. Taken together, this study provides a valuable resource for examining cis-trans regulatory mechanisms in human skeletal development and highlights DLX5 as a key transcriptional regulator controlled by an osteoblast super-enhancer.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dgd.70023DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
16
regulatory mechanisms
12
skeletal development
12
mechanisms human
8
human embryonic
8
embryonic stem
8
differentiation human
8
human skeletal
8
osteoblast
6
human
5

Similar Publications

Effects of dermal-fibroblast-derived ECM and dextran sulfate supplementation on osteoblast differentiation - results of a preliminary in vitro study.

Injury

August 2025

Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:

Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.

View Article and Find Full Text PDF

The Role of EphrinB2-EphB4 Signalling Pathway in Regeneration of Inflammatory Bone Defect.

J Cell Mol Med

September 2025

Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China.

The important role of the EphrinB2-EphB4 signalling pathway in bone remodelling has been demonstrated, while its effect on inflammatory bone defect regeneration remains poorly understood. This study was to assess the effect of EphB4-EphrinB2 signalling on inflammation-mediated bone defect repair in murine models. The modelling method of inflammation-mediated bone defect in mice was established by intraperitoneally injecting different concentrations of TNF-α.

View Article and Find Full Text PDF

Lotus seed (Nelumbo nucifera) protein-derived calcium-binding peptides: Isolation, characterization, and osteogenic effect.

Int J Biol Macromol

September 2025

Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea. Electronic address:

Natural protein-derived peptides are gaining attention for their potential in promoting health, particularly in nutraceutical formulations. In this study, calcium-binding peptides from lotus seed were produced and characterized using UV, FT-IR, Raman, and EDS, and SEM. The calcium-peptide (LSPIH-Ca) complex was subjected to its osteogenic effect in murine bone marrow-derived mesenchymal stem cells (D1 MSCs).

View Article and Find Full Text PDF

Multidimensional Regulation of Bone Marrow Niche Using Extracorporeal Shock Wave Responsive Nanocomposites for Osteoporosis Therapy.

Small

September 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

Multidimensional modulation of the bone marrow niche represents a pivotal therapeutic strategy for bone-related disorders. However, its clinical translation remains challenging due to the inherent limitations imposed by the bone physiological barrier. Herein, a bone cavity-targeted nanocomposite (ZCD) is developed that can respond to extracorporeal shock wave (ESW), enabling triaxial regulation by inhibiting adipogenic differentiation, promoting osteogenic differentiation, and suppressing osteoclast activity.

View Article and Find Full Text PDF

Royal jelly (RJ), secreted by honeybees, contains major fatty acids such as 10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), which are considered to contribute to bone metabolism. However, these fatty acids are rapidly metabolized in the liver following ingestion, resulting in 2-decenoic acid (2DA) and sebacic acid (SA), respectively. Therefore, elucidating the roles of these metabolites in bone metabolism is of considerable importance.

View Article and Find Full Text PDF