98%
921
2 minutes
20
The growth of subsolid nodules (SSNs) is a strong predictor of lung adenocarcinoma. However, the heterogeneity in the biological behavior of SSNs poses significant challenges for clinical management. This study aimed to evaluate the clinical utility of deep learning and radiomics approaches in predicting SSN growth based on computed tomography (CT) images. A total of 353 patients with 387 SSNs were enrolled in this retrospective study. All cases were divided into growth (n = 195) and non-growth (n = 192) groups and were randomly assigned to the training (n = 247), validation (n = 62), and test sets (n = 78) in a ratio of 3:1:1. We obtained 1454 radiomics features from each volumetric region of interest (VOI). Pearson correlation coefficient and the least absolute shrinkage and selection operator (LASSO) methods were used for radiomics signature determination. A ResNet18 architecture was used to construct the deep-learning model. The 2 models were combined via a ResNet-based fusion network to construct an ensemble model. The area under the curve (AUC) was plotted and decision curve analysis (DCA) was performed to determine the clinical performance of the 3 models. The combined model (AUC = 0.926, 95% CI: 0.869-0.977) outperformed the radiomics (AUC = 0.894, 95% CI: 0.808-0.957) and deep-learning models (AUC = 0.802, 95% CI: 0.695-0.899) in the test set. The DeLong test results showed a statistically significant difference between the combined model and the deep-learning model (P = .012), supporting the clinical value of DCA. This study demonstrates that integrating radiomics with deep learning offers promising potential for the preoperative prediction of SSN growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401382 | PMC |
http://dx.doi.org/10.1097/MD.0000000000044104 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.
Sci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, Japan.
Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.
View Article and Find Full Text PDF