FLASH-enabled Proton SBRT for a challenging case of spine metastasis.

Phys Med Biol

Department of oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Herestraat 49, Leuven, Vlaanderen, 3001, BELGIUM.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The FLASH effect, characterized by potential sparing of organs at risk (OAR) through ultra-high dose rate irradiation, has garnered significant attention for its capability to address indications previously untreatable at conventional dose rates (DR) with hypofractionated schemes. While considerable biological research is needed to understand the FLASH effect and determine the FLASH modifying factors (FMF) for individual OARs, treatment planning studies have also emerged. This study evaluates the feasibility of achieving FLASH conditions in proton stereotactic body radiotherapy for spine metastases and establishes the required FMFs under different fractionation regimens.

Approach: A conformal FLASH Proton SBRT plan was generated for a patient with spine metastasis in a research version of RayStation11B (RaySearch laboratories AB, Stockholm) on an IBA Proteus Plus system. Two oblique posterior beams were used in the plan. The prescribed dose to the CTV was set according to 3 different fractionation regimens: 5 fractions (fx) of 7 Gy, 8 fx of 5 Gy, and 10 fx of 4.2 Gy. Spot filtering and sorting techniques were applied to maximize the 5% pencil beam scanning DR in the spinal cord (SC). The FLASH effect was assumed to be observed within irradiated regions above 40 Gy/s and 4 Gy per fraction.

Main Results: The generated plans successfully ensure robust target coverage in each fraction. The volume of SC that does not comply with the clinical goal adheres to the FLASH effect conditions in each fraction. Depending on the aforementioned fractionation schemes used, a FMF of approximately 0.6 to 0.8 is necessary to enable such treatment in FLASH conditions.

Significance: This study indicates that treating challenging spine metastases with protons using FLASH delivery is technically feasible. However, clinical viability depends on optimistic parameters to trigger the FLASH effect and FMF values below 0.8, which are not yet guaranteed given current research.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ae023cDOI Listing

Publication Analysis

Top Keywords

flash
10
proton sbrt
8
spine metastasis
8
flash conditions
8
spine metastases
8
flash-enabled proton
4
sbrt challenging
4
challenging case
4
spine
4
case spine
4

Similar Publications

Individual alpha frequency tACS modifies the detection of space-time optical illusion.

Exp Brain Res

September 2025

Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.

Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.

View Article and Find Full Text PDF

Purpose: Large language models (LLMs) can assist patients who seek medical knowledge online to guide their own glaucoma care. Understanding the differences in LLM performance on glaucoma-related questions can inform patients about the best resources to obtain relevant information.

Methods: This cross-sectional study evaluated the accuracy, comprehensiveness, quality, and readability of LLM-generated responses to glaucoma inquiries.

View Article and Find Full Text PDF

Purpose: This study explores the potential of generative AI models to aid experts in developing scripts for pharmacokinetic (PK) models, with a focus on constructing a two-compartment population PK model using data from Hosseini et al.

Methods: Generative AI tools ChatGPT v3.5, Gemini v2.

View Article and Find Full Text PDF

New coumarins from the -butanol part of .

Nat Prod Res

September 2025

Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China.

Chemical investigations of the -butanol extract of the roots of were carried out using column chromatography, flash, semi-preparative HPLC, and chiral HPLC. Five unidentified compounds, including two prenylated coumarin glucosides, two prenylated furanocoumarin glucosides, and a benzofuran glucoside, together with twelve known compounds, were isolated from the -butanol fraction of extract. The structures of these compounds were identified by HRMS, NMR, UV, ECD in combination with quantum chemical calculations, and comparison with the literature.

View Article and Find Full Text PDF

Sparing effects of FLASH irradiation in patient-derived lung tissue.

Radiother Oncol

September 2025

Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, 91405 Orsay Cedex, France. Electronic address:

Background And Purpose: Radiation toxicities, such as pneumonitis and fibrosis, are major limitations affecting patients' quality of life. Developed a decade ago, FLASH radiotherapy is an innovative method that, by delivering radiation at ultrafast dose rate, reduces radiation toxicities on healthy tissue while preserving the anti-tumoral effect of radiotherapy. This so-called FLASH effect has been described in different preclinical models but has not been observed in human tissue.

View Article and Find Full Text PDF