Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In auditory cortex, neural responses to stimuli inside receptive fields (RFs) can be further facilitated by behavioral demands, such as attending to a spatial location. It is less clear how off-RF stimuli modulate neural responses and contribute to behavioral tasks. Our recent study revealed a particular form of location-specific facilitation evoked by repeated stimulation from an off-RF location, suggesting behavioral modulation of spatial RFs. To further explore this question, we trained marmosets to attend to sound locations that were either inside or outside the RFs of auditory cortical neurons. The majority of neurons showed increased firing rates at target locations inside their RFs. Interestingly, this increase also occurred outside the RFs, sometimes exceeding the responses at the RF center during passive listening. These task-related off-RF facilitation were much more common in the caudal area than in the rostral area and the primary auditory cortex. A normalization model reproduced the off-RF facilitation using widespread suppression. The model's prediction was confirmed by experimental observations of widespread reductions in firing rate and hyperpolarized membrane potentials for off-RF stimuli. These results suggest that behavioral task demands recruit a broader range of neurons than those that are responsive to a target sound in the passive state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393296PMC
http://dx.doi.org/10.1101/2025.08.14.669832DOI Listing

Publication Analysis

Top Keywords

auditory cortex
12
sound locations
8
neural responses
8
off-rf stimuli
8
locations inside
8
inside rfs
8
off-rf facilitation
8
rfs
5
off-rf
5
dynamic representation
4

Similar Publications

Distinct Neural Mechanisms of Visual and Sound Adaptation in the Cat Visual Cortex.

Eur J Neurosci

September 2025

The Tampa Human Neurophysiology Lab, Department of Neurosurgery, Brain and Spine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.

Sensory areas exhibit modular selectivity to stimuli, but they can also respond to features outside of their basic modality. Several studies have shown cross-modal plastic modifications between visual and auditory cortices; however, the exact mechanisms of these modifications are yet not completely known. To this aim, we investigated the effect of 12 min of visual versus sound adaptation (referring to forceful application of an optimal/nonoptimal stimulus to a neuron[s] under observation) on the infragranular and supragranular primary visual neurons (V1) of the cat (Felis catus).

View Article and Find Full Text PDF

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.

Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.

View Article and Find Full Text PDF

Brain activation for language and its relationship to cognitive and linguistic measures.

Cereb Cortex

August 2025

Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.

Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.

View Article and Find Full Text PDF

Recessive variants in TWNK cause syndromic and non-syndromic post-synaptic auditory neuropathy through MtDNA replication defects.

Hum Genet

September 2025

College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.

Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.

View Article and Find Full Text PDF