98%
921
2 minutes
20
Aim: This study investigates the enhancement of mechanical and morphological properties of dental resin composites through the incorporation of hexagonal boron nitride (hBN) and boron nitride nanotubes (BNNTs) using additive manufacturing techniques.
Materials And Methods: hBN-modified resin (1 wt%) and BNNT-modified resin (0.1 wt%) were prepared separately, with BNNTs pre-dispersed in dimethylformamide (DMF) before mixing into the resin matrix. Stereolithography (SLA) 3D printing was employed to fabricate dental structures. Compression tests were conducted on neat resin, hBN-reinforced resin, and BNNT-reinforced resin, and scanning electron microscopy (SEM) was utilized to analyze fracture mechanisms. Finite element method (FEM) simulations further explored the interactions within the composites.
Results: The compression strength of neat resin, hBN-reinforced resin, and BNNT-reinforced resin averaged 24.93 MPa, 25.92 MPa, and 36.31 MPa, respectively. SEM analysis revealed improved interfacial bonding, leading to enhanced load transfer and fracture resistance. FEM simulations corroborated these findings, highlighting the reinforcing effect of the nanomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401845 | PMC |
http://dx.doi.org/10.1186/s11671-025-04337-0 | DOI Listing |
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
August 2025
Department of Prosthodontics and Crown & Bridge, SRM Dental College, Ramapuram Campus, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India.
Background Of The Study: known for its bioactive phytochemicals and antimicrobial potential; however, studies evaluating its outcome on the color, mechanical properties and antimicrobial activity of 3D-printed provisional dental resins are lacking. So this study evaluate the effect of seed extract incorporation on the color assessment, flexural strength, compressive strength, microhardness and antimicrobial activity of 3D-printed provisional crown and bridge resin.
Materials And Methods: A total of 240 samples were prepared, with 60 samples allocated to four groups based on 0 %, 1.
Front Med (Lausanne)
August 2025
Department of Pharmacy, Jiblah University for Medical and Health Science, Ibb, Yemen.
Background: () Resin has been used in traditional medicine for millennia because of its anti-inflammatory, antibacterial, and wound-healing characteristics. Recent research has proved its medicinal promise, particularly against resistant bacterial strains and oxidative stress.
Objective: This study seeks to assess the antimicrobial and antioxidant properties of resin, extracted with ethanol, and to formulate a topical cream for dermatological use, specifically targeting skin infections and inflammatory conditions such as acne.
Front Nephrol
August 2025
Department of Nephrology, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal.
Background: High-dose methotrexate (HDMTX) is central to treating primary central nervous system lymphoma but carries a risk of acute kidney injury (AKI), which can delay methotrexate (MTX) clearance and increase toxicity. Glucarpidase is the treatment of choice for MTX toxicity, but limited access in many countries may necessitate alternatives. We present the first reported adult case of combined high-flux hemodialysis (HFHD) and HA230 hemoadsorption for MTX clearance.
View Article and Find Full Text PDFChem Sci
September 2025
School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China
To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.
View Article and Find Full Text PDF