Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identification of a pathogenic variant in NF1 is diagnostic for neurofibromatosis, but is often impossible at the moment of variant detection due to many factors including allelic heterogeneity, sequence homology, and the lack of functional assays. Computational tools may aid in interpretation but are not established for NF1. Here, we optimized our random forest-based predictor RENOVO for NF1 variant interpretation. RENOVO was developed using an approach of "database archaeology": by comparing versions of ClinVar over the years, we defined "stable" variants that maintained the same pathogenic/likely pathogenic/benign/likely benign (P/LP/B/LB) classification over time (n = 3579, the training set), and "unstable" variants that were initially classified as Variants of Unknown Significance (VUS) but were subsequently reclassified as P/LP/B/LB (n = 57, the test set). This approach allows to retrospectively measure accuracy on prediction with insufficient information, reproducing the scenario of maximal clinical utility. We further validated performance on: (i) validation set 1: 100 NF1 variants classified as VUS at the time of RENOVO development and subsequently reclassified as P/LP/B/LB in ClinVar; (ii) validation set 2: 15 de novo variants discovered in a prospective clinical cohort and subsequently reclassified per ACMG criteria. RENOVO obtained consistently high accuracy on all datasets: 98.6% on the training test, 96.5% in the test set, 82% in validation set 1 (but 96.2% for missense variants) and 93.7% on validation set 2. In conclusion, RENOVO-NF1 accurately interprets NF1 variants for which information at the time of detection is insufficient for ACMG classification and may overcome diagnostic challenges in neurofibromatosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400616PMC
http://dx.doi.org/10.1186/s40246-025-00803-zDOI Listing

Publication Analysis

Top Keywords

validation set
16
subsequently reclassified
12
renovo-nf1 accurately
8
reclassified p/lp/b/lb
8
test set
8
nf1 variants
8
variants
7
set
7
nf1
6
accurately predicts
4

Similar Publications

The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.

View Article and Find Full Text PDF

Integrating opinion dynamics and differential game modeling for sustainable groundwater management.

Water Res

September 2025

College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:

Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.

View Article and Find Full Text PDF

Kinship verification via correlation calculation-based multi-task learning.

PLoS One

September 2025

School of Computer Science and Technology, Huaiyin Normal University, Huai'an, Jiangsu, China.

Previous studies have demonstrated that metric learning approaches yield remarkable performance in the field of kinship verification. Nevertheless, a prevalent limitation of most existing methods lies in their over-reliance on learning exclusively from specified types of given kin data, which frequently results in information isolation. Although generative-based metric learning methods present potential solutions to this problem, they are hindered by substantial computational costs.

View Article and Find Full Text PDF

Background: Disulfidptosis, a novel cellular death manner, has yet to be fully explored within the context of pulmonary arterial hypertension (PAH). This study aims to identify genes implicated in PAH that are involved in disulfidptosis.

Method: Based on data from the GEO database, this study employed co-expression analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), hub gene identification, and Gene Set Enrichment Analysis (GSEA) to uncover genes associated with PAH and disulfidptosis.

View Article and Find Full Text PDF

Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.

View Article and Find Full Text PDF