Deciphering intrakingdom synergism in 17β-estradiol degradation through DNA-SIP coupled metagenomics: Metabolic cooperation and niche partitioning in bioaugmented soil microbiomes.

J Hazard Mater

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

17β-Estradiol (17β-E2), a persistent endocrine-disrupting compound, threatens ecosystem health through bioaccumulation. While bioaugmentation offers promise for environmental remediation, mechanistic insights into interspecies interactions between exogenous and indigenous degraders remain underexplored. Here, a synthetic microbial consortium (EL) was constructed by combining Rhodococcus erythropolis D310-1 and Microbacterium oxydans ML-6, which reduced the 17β-E2 degradation half-life by 53.65 % compared with that of the noninoculated control while suppressing the accumulation of the toxic intermediate estrone (E1). Temporal 16S rRNA gene amplicon sequencing profiling with co-occurrence network analysis revealed that the consortium EL dynamically reinforced ecological synergies with indigenous functional microbiota, accelerating contaminant mineralization. DNA-stable isotope probing (DNA-SIP) coupled with metagenomics identified Rhodanobacter, Mycobacterium, Rhodococcus, Sphingomonas, and Microbacterium spp. as active 17β-E2 assimilators. Furthermore, high-performance liquid chromatography coupled with quadrupole timeflight mass spectrometry (HPLCQTOFMS) was used to predict three complementary degradation pathways in the assembled genomes, revealing related functional enzymes and addressing functional partitioning between exogenous inoculants and indigenous degraders. Two novel gene clusters responsible for 17β-E2 biodegradation were evaluated. This study pioneers DNA-SIP and metagenomics to track C-labelled 17β-E2 fate within bioaugmented soil microbiota, resolving intrakingdom bacteria collaborations that drive 17β-E2 biodegradation in soil. The identification of cross-consortium metabolic handoffs provides a blueprint for engineering syntrophic partnerships targeting steroidal estrogens (SEs) pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.139709DOI Listing

Publication Analysis

Top Keywords

dna-sip coupled
8
coupled metagenomics
8
bioaugmented soil
8
indigenous degraders
8
17β-e2 biodegradation
8
17β-e2
6
deciphering intrakingdom
4
intrakingdom synergism
4
synergism 17β-estradiol
4
17β-estradiol degradation
4

Similar Publications

Deciphering intrakingdom synergism in 17β-estradiol degradation through DNA-SIP coupled metagenomics: Metabolic cooperation and niche partitioning in bioaugmented soil microbiomes.

J Hazard Mater

August 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China. Electronic address:

17β-Estradiol (17β-E2), a persistent endocrine-disrupting compound, threatens ecosystem health through bioaccumulation. While bioaugmentation offers promise for environmental remediation, mechanistic insights into interspecies interactions between exogenous and indigenous degraders remain underexplored. Here, a synthetic microbial consortium (EL) was constructed by combining Rhodococcus erythropolis D310-1 and Microbacterium oxydans ML-6, which reduced the 17β-E2 degradation half-life by 53.

View Article and Find Full Text PDF

The sulfur-driven autotrophic partial denitrification coupled with anammox (SPDA) process showed significant advantages in energy conservation and resource recovery in municipal wastewater treatment. However, its application in regions with seasonal temperature fluctuations and high latitudes is challenged by low temperatures. In this study, the feasibility of the SPDA process for treating low-strength municipal wastewater across a wide temperature range (30-10 °C) was systematically investigated.

View Article and Find Full Text PDF

Background: Microbial methane oxidation, methanotrophy, plays a crucial role in mitigating the release of the potent greenhouse gas methane from aquatic systems. While aerobic methanotrophy is a well-established process in oxygen-rich environments, emerging evidence suggests their activity in hypoxic conditions. However, the adaptability of these methanotrophs to such environments has remained poorly understood.

View Article and Find Full Text PDF

Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields.

Nat Commun

April 2024

National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.

Article Synopsis
  • Paddy fields are identified as crucial sites for microbial denitrification, which often occurs alongside the oxidation of methane under low-oxygen conditions.
  • A large field study in China and laboratory experiments show that aerobic methane oxidation significantly supports denitrification processes, revealing a positive correlation between these activities across different climates.
  • The research uncovers over 70 microbial types involved in these processes and highlights the role of organic compounds produced during methane oxidation in facilitating denitrification, emphasizing its relevance for agricultural nitrogen management and greenhouse gas emission control.
View Article and Find Full Text PDF

Methane Oxidation Coupled to Selenate Reduction in a Membrane Bioreactor under Oxygen-Limiting Conditions.

Environ Sci Technol

December 2023

Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.

Microbial methane oxidation coupled to a selenate reduction process has been proposed as a promising solution to treat contaminated water, yet the underlying microbial mechanisms are still unclear. In this study, a novel methane-based membrane bioreactor system integrating hollow fiber membranes for efficient gas delivery and ultrafiltration membranes for biomass retention was established to successfully enrich abundant suspended cultures able to perform methane-dependent selenate reduction under oxygen-limiting conditions. The microbial metabolic mechanisms were then systematically investigated through a combination of short-term batch tests, DNA-based stable isotope probing (SIP) microcosm incubation, and high-throughput sequencing analyses of 16S rRNA gene and functional genes ( and ).

View Article and Find Full Text PDF