Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Machine Learning Force Fields (MLFFs) promise to enable general molecular simulations that can simultaneously achieve efficiency, accuracy, transferability, and scalability for diverse molecules, materials, and hybrid interfaces. A key step toward this goal has been made with the GEMS approach to biomolecular dynamics [Unke et al., Sci. Adv. , , eadn4397]. This work introduces the SO3LR method that integrates the fast and stable SO3krates neural network for semilocal interactions with universal pairwise force fields designed for short-range repulsion, long-range electrostatics, and dispersion interactions. SO3LR is trained on a diverse set of 4 million neutral and charged molecular complexes computed at the PBE0+MBD level of quantum mechanics, ensuring broad coverage of covalent and noncovalent interactions. Our approach is characterized by computational and data efficiency, scalability to 200 thousand atoms on a single GPU, and reasonable to high accuracy across the chemical space of organic (bio)molecules. SO3LR is applied to study units of four major biomolecule types, polypeptide folding, and nanosecond dynamics of larger systems such as a protein, a glycoprotein, and a lipid bilayer, all in explicit solvent. Finally, we discuss future challenges toward truly general molecular simulations by combining MLFFs with traditional atomistic models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c09558DOI Listing

Publication Analysis

Top Keywords

molecular simulations
12
force fields
12
neural network
8
universal pairwise
8
pairwise force
8
general molecular
8
molecular
4
simulations pretrained
4
pretrained neural
4
network universal
4

Similar Publications

Analyzing the toxicological effects of PET-MPs on male infertility: Insights from network toxicology, mendelian randomization, and transcriptomics.

Reprod Biol

September 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across

Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.

View Article and Find Full Text PDF

Understanding the evaporation mechanism of liquid ethanol and ethanol-water binary mixtures is important for numerous scientific and industrial processes. The amount of water in liquid water-ethanol mixtures can significantly affect how quickly ethanol molecules evaporate. Here, we study the mechanism and rate of evaporation of ethanol from pure liquid ethanol and ethanol/water binary mixtures through both unbiased molecular dynamics simulations and biased simulations using the umbrella sampling method.

View Article and Find Full Text PDF

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF

Protein Deamidation Reduced Digestive Resistance and Amyloid Antigenicity of Soy Proteins via Depolymerization.

J Agric Food Chem

September 2025

Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.

Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.

View Article and Find Full Text PDF

Multistate Ferroelectricity Enabled by Electrically Controlled Phase Transition of Two-Dimensional Ices.

Phys Rev Lett

August 2025

Nanjing University of Aeronautics and Astronautics, State Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nano Science, Nanjing, 210016, China.

Multistate ferroelectric polarization holds promise for realizing high-density nonvolatile memory devices, but so far is restricted to a few traditional ferroelectrics. Here, we show that nanoconfined two-dimensional (2D) ferroelectric ice can achieve phase-dependent multistate polarization through extensive classical and ab initio molecular dynamics simulations. An in-plane electric field is found to induce the reversible transition between a low-polarization AA-stacked hexagonal ice phase and an unprecedented high-polarization AB-stacked ice phase, resulting in a four-state ferroelectric switching pathway.

View Article and Find Full Text PDF