Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Insulin deficiency caused by the loss of β cells and/or impaired insulin secretion is a key factor in the pathogenesis of type 2 diabetes (T2D). The restoration of β cell number and function is thus a promising strategy to combat diabetes. Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) has been shown to regulate human β cell proliferation. DYRK1A inhibitors are potential therapeutic tools, due to their ability to induce β cell proliferation. However, their anti-diabetic effects in the complex setting of type 2 diabetes remains unexplored. The aim of this study was to determine the impact of chronic DYRK1A inhibition on the remission of diabetes in pre-diabetic and overtly diabetic Goto-Kakizaki (GK) rats.

Methods: We assessed the impact of in vivo treatment with a DYRK1A inhibitor, Leucettinib-92, on β cell proliferation and insulin secretion in GK rats. Further, we evaluated the effects of long-term Leucettinib-92 treatment on the whole-body glucose metabolism in overtly diabetic GK rats through the assessment of fasting and post-absorptive glycemia, glucose tolerance and insulin sensitivity.

Results: Short-term in vivo treatment of prediabetic GK rats with Leucettinb-92 stimulated β cell proliferation in vivo, and sustainably prevented development of overt hyperglycemia. Long-term treatment of adult GK rats with established diabetes increased the β cell mass and reduced basal hyperglycemia. Leucettinib-92 treatment also improved the glucose tolerance, and glucose-induced insulin secretion in vivo.

Conclusions: We show that DYRK1A inhibition restores the β cell mass and function in a preclinical model of T2D, leading to the improvement of body's global glucose homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molmet.2025.102242DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
dyrk1a inhibition
12
type diabetes
12
insulin secretion
12
inhibition restores
8
glucose metabolism
8
preclinical model
8
overtly diabetic
8
vivo treatment
8
leucettinib-92 treatment
8

Similar Publications

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.

View Article and Find Full Text PDF

Multi-omic analysis reveals a key BCAT1 role in mTOR activation by B-cell receptor and TLR9.

J Clin Invest

September 2025

Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF