Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pancreatic cancer is aggressive with high recurrence rates, necessitating accurate prediction models for effective treatment planning, particularly for neoadjuvant chemotherapy or upfront surgery. This study explores the use of variational autoencoder (VAE)-generated synthetic data to predict early tumor recurrence (within six months) in pancreatic cancer patients who underwent upfront surgery. Preoperative data of 158 patients between January 2021 and December 2022 was analyzed, and machine learning models-including Logistic Regression, Random Forest (RF), Gradient Boosting Machine (GBM), and Deep Neural Networks (DNN)-were trained on both original and synthetic datasets. The VAE-generated dataset (n = 94) closely matched the original data (p > 0.05) and enhanced model performance, improving accuracy (GBM: 0.81 to 0.87; RF: 0.84 to 0.87) and sensitivity (GBM: 0.73 to 0.91; RF: 0.82 to 0.91). PET/CT-derived metabolic parameters were the strongest predictors, accounting for 54.7% of the model predictive power with maximum standardized uptake value (SUVmax) showing the highest importance (0.182, 95% CI: 0.165-0.199). This study demonstrates that synthetic data can significantly enhance predictive models for pancreatic cancer recurrence, especially in data-limited scenarios, offering a promising strategy for oncology prediction models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397232PMC
http://dx.doi.org/10.1038/s41598-025-15800-4DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
16
synthetic data
12
early tumor
8
tumor recurrence
8
prediction models
8
upfront surgery
8
synthetic
4
data generation
4
generation method
4
method improves
4

Similar Publications

To develop a DeepSurv model for predicting survival in pancreatic adenocarcinoma patients, evaluating the benefit of surgical versus non-surgical treatment across different stages, including stage IV subcategories. Clinical data were extracted from the SEER database (2000-2020). Patients were randomly divided into a model-building group and an experimental group.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is defined by a myeloid-enriched microenvironment and has shown remarkable resistance to immune checkpoint blockade (e.g., PD-1 and CTLA-4).

View Article and Find Full Text PDF

Bone metastases (BMs) are rare and late event in patients with neuroendocrine tumors (NETs). The aim of our study was to investigate clinical presentation and outcome of BMs in a large cohort of patients with NETs. A retrospective study was performed at two referral centers of Northern Italy (IRCCS Humanitas Research Hospital in Milan and S.

View Article and Find Full Text PDF

Significance: Tumor tissues exhibit contrast with healthy tissue in circular degree of polarization (DOP) images via higher magnitude circular DOP values and increased helicity-flipping. This phenomenon may enable polarimetric tumor detection and surgical/procedural guidance applications.

Aim: Depolarization metrics have been shown to exhibit differential responses to healthy and cancer tissue, whereby tumor tissues tend to induce less depolarization; however, the understanding of this depolarization-based contrast remains limited.

View Article and Find Full Text PDF

Hypoxia promotes pancreatic adenocarcinoma progression by stabilizing ID1 via TRIM21 suppression.

Front Oncol

August 2025

Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.

Introduction: Pancreatic adenocarcinoma (PAAD) is a highly aggressive malignancy characterized by a profoundly hypoxic tumor microenvironment, which fosters tumor progression and confers resistance to therapy The oncogenic regulator ID1has been implicated in PAAD malignancy, however, the mechanisms underlying hypoxia-induced stabilization of ID1 and the role of ubiquitin-mediated degradation remain poorly understood. Elucidating these pathways is essential for identifying novel therapeutic targets for PAAD.

Methods: In this study, we examined ID1 expression in PAAD tissues and cell lines using publicly available databases and in vitro models.

View Article and Find Full Text PDF