98%
921
2 minutes
20
We demonstrate a novel, to the best of our knowledge, two-stage experimental approach that cascades Z-scan and transient absorption (TA) spectroscopy for comprehensive carrier dynamics characterization in semiconductor saturable absorber mirrors (SESAMs). This approach exploits the complementary nature of steady-state and dynamic measurements to extract complete sets of nonlinear optical parameters across multiple temporal regimes. When applied to a 2-period InGaAs/GaAsP quantum wells SESAM sample, our method systematically extracts saturation intensity (), modulation depth (), and temporal constants (, ) with high precision. The derived absorption cross-sections (, ) enable accurate carrier dynamics simulations, revealing bi-exponential recovery behavior with fast intraband thermalization and slow recombination processes. We argue that the cascaded characterization strategy provides a tool for understanding ultra-fast carrier dynamics in saturable absorbers (SAs), bridging steady-state and transient optical properties for comprehensive material characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.571660 | DOI Listing |
Alzheimers Dement
September 2025
Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea.
Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.
Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.
RSC Adv
September 2025
Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain
Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.
View Article and Find Full Text PDFInt J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDFAdv Mater
September 2025
College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.
Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.
View Article and Find Full Text PDF