98%
921
2 minutes
20
Affordable, long-lasting energy storage has become critical to support increased electricity demand in recent years. Cobalt-free, lithium- and manganese-rich lithium nickel manganese oxide (LMR-NM) cathodes stand to reduce cost and supply-chain concerns associated with traditional cobalt-containing cathodes for lithium-ion batteries by leveraging more earth-abundant materials; however, they have shown issues with long-term cycling stability. Here, we investigate lithium difluoro-(oxalate)-borate (LiDFOB), tris-(trimethylsilyl) phosphite (TMSPi), and vinylene carbonate (VC) electrolyte additives for their ability to improve cycling performance of LMR-NM (0.3 LiMnO + 0.7 LiMnNi0) cells. Cryogenic scanning transmission electron microscopy (cryo-STEM) with electron energy loss spectroscopy enables the construction of a structure-function relationship between cathode electrolyte interphase (CEI) characteristics and the electrochemical performance of cells aged with these additives. We find the combination of 2 wt % TMSPi + 1 wt % LiDFOB performs better than any single additive, achieving a 28% improvement in specific capacity over the baseline electrolyte after long-term cycling. We attribute this to LiDFOB mitigating Mn ion dissolution, with cryo-STEM showing Mn stabilized up to the CEI surface, coupled with improved CEI structure and chemistry enabled by TMSPi, evidenced by a moderately thick (∼7-15 nm) CEI that appears to protect against further electrolyte reactions with the particle. These results, achieved through site-specific nanoscale characterization, directly reveal mechanisms through which electrolyte engineering can improve the performance of earth-abundant cathodes, enabling informed development of more affordable and reliable batteries to meet future energy storage needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381821 | PMC |
http://dx.doi.org/10.1021/acsaem.5c00862 | DOI Listing |
ACS Omega
September 2025
Department of Physics, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
We report the performance of solid-state ceramic supercapacitors (SSCs) based on a novel composite electrolyte comprising aluminum-doped lithium lanthanum titanate perovskite, LiLaTiAlO (Al-doped LLTO), and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM BF). Rietveld refinement of X-ray diffraction data confirms the preservation of the tetragonal perovskite phase after Al substitution, indicating structural stability of the host lattice. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy further corroborate the successful incorporation of Al without forming secondary phases.
View Article and Find Full Text PDFACS Omega
September 2025
Changsha Research Institute of Mining and Metallurgy CO., LTD, Changsha 410012, Hunan, China.
The long-term accumulation of electrolytic manganese residue leads to pollution issues related to NH -N and Mn. Although various methods exist to address the pollution caused by NH -N and Mn, existing hazard-free treatment methods do not consider the subsequent utilization of the electrolytic manganese residue. Meanwhile, resource recovery methods face challenges due to the complex salt structures present in electrolytic manganese residue.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
This study pioneers the use of organic nitrate C(NH)NO as an electrolyte additive in lithium metal batteries (LMBs). C(NH)NO can effectively construct a high-quality solid electrolyte interphase (SEI) on the lithium metal anode, thereby enabling dendrite-free and uniform spherical lithium (Li) deposition.
View Article and Find Full Text PDFMater Horiz
September 2025
Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
This work presents the synthesis of a molecular crystal of adiponitrile (Adpn) and LiI a simple melting method. The molecular crystal has both Li and I channels and can be either a Li or an I conductor. In the stoichiometric crystal (Adpn)LiI, the Li ions interact only with four CN groups of Adpn, while the I ions are uncoordinated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.
View Article and Find Full Text PDF