Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite remarkable advancements in organic flexible electronics, performance variability and operational instability, rooted in weak van der Waals interaction correlated defects, remain long-standing challenges. Herein, we address these issues through a synergistic strategy integrating organic single crystals, surface doping, and source-gated transistors (SGTs). FTS ((tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane) monolayer decoration contributes to a trap-free and high-conductance (11.1 ± 0.2 μS) crystal surface. Combined with the unique charge depletion mode of SGTs, record-high mobilities of 23.7 cm V s are achieved, with a reduced device-to-device mobility variation of 3.9% across 50 samples 42.7% in FETs. Crucially, doped SGTs exhibit 98% performance retention under 100% relative humidity for 7 hours, improved bias stability (1.2% degradation at 100 Hz over 100 s), and negligible current alteration in bending/stretching tests. Our research provides a unique approach to design robust and high-performance devices, advancing the reliability of organic electronics in flexible driving circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5mh01246eDOI Listing

Publication Analysis

Top Keywords

surface doping
8
synergistic surface
4
organic
4
doping organic
4
organic crystals
4
crystals source-gated
4
source-gated architectures
4
architectures ultra-stable
4
ultra-stable high-mobility
4
high-mobility strain-insensitive
4

Similar Publications

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF

Suppression of passivation on NiMoO4 microrod by ultrathin metal-organic-framework nanosheets in urea-assisted natural seawater splitting.

J Colloid Interface Sci

September 2025

Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam. Electronic address:

Organic nucleophile-assisted natural seawater electrolysis has emerged as a promising strategy for green hydrogen production by significantly reducing energy consumption. Among Ni-based electrocatalysts, NiMoO has drawn attention for its activity in both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). However, its practical application is hindered by severe surface passivation, particularly at industrial current densities (e.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

Defect Engineering-Driven Electron Spin Polarization and Charge Transfer in MOFs for Enhanced Sonocatalytic Therapy.

Adv Mater

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical

Sonocatalytic therapy (SCT) is a non-invasive tumor treatment modality that utilizes ultrasound (US)- activated sonocatalysts to generate reactive oxygen species (ROS), whose production critically dependent on the electronic structural properties of the catalytic sites. However, the spin state, which is a pivotal descriptor of electronic properties, remains underappreciated in SCT. Herein, a Ti-doped zirconium-based MOF (Ti-UiO-66, denoted as UTN) with ligand-deficient defects is constructed for SCT, revealing the important role of the electronic spin state in modulating intrinsic catalytic activity.

View Article and Find Full Text PDF