Recent advances of stretchable soft antennas: material, structure and integration.

Nanoscale Horiz

State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stretchable soft antennas represent a transformative class of devices that seamlessly integrate wireless communication into deformable and dynamic platforms. Enabled by advances in functional materials and structural engineering, these antennas can withstand large mechanical deformations while maintaining stable electromagnetic performance - unlocking new possibilities in wearable electronics, soft robotics, and implantable biomedical systems. This review systematically surveys recent progress in conductive material choices - from traditional metals and liquid metal to nanocomposites and hybrid architectures - and examines how structural strategies such as serpentine layouts, kirigami patterns, and out-of-plane designs redistribute strain to preserve antenna performance under repeated deformation. We also discuss emerging fabrication techniques and applications in wireless health monitoring, soft robotic systems, and energy harvesting. Finally, we highlight key challenges, including improving environmental stability, achieving seamless multi-module integration, and unraveling the coupling mechanisms between mechanical deformation and electromagnetic behavior. This review offers a materials and structure driven framework for the rational design of stretchable soft antennas with robust wireless functionality.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nh00383kDOI Listing

Publication Analysis

Top Keywords

stretchable soft
12
soft antennas
12
soft
5
advances stretchable
4
antennas
4
antennas material
4
material structure
4
structure integration
4
integration stretchable
4
antennas represent
4

Similar Publications

Engineering aspects and materials for next generation neural implants.

Prog Mol Biol Transl Sci

September 2025

Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, La Jolla, CA, United States. Electronic address:

Nano-electronics based neural implants represent a rapidly advancing interdisciplinary domain at the intersection of bioelectronics, nanotechnology, and neuro-engineering. These implantable systems are engineered to restore, modulate, or augment neural functions by establishing high-fidelity, long-term interfaces with neural tissues. The design of such implants necessitates careful consideration of both materials and structural configurations to ensure biocompatibility, mechanical compliance, electrical functionality, and chronic stability.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

Mozzarella is a white, soft, fermented cheese that is often recognized for its stretchability and typically contains approximately 40% total fat (dry basis), a considerable portion of which is saturated fat. Low-fat mozzarella cheese (LFMC) has started to increase in popularity among health-conscious consumers. Unfortunately, the inadequate meltability and rubbery texture of LFMC make it undesirable for many consumers.

View Article and Find Full Text PDF

Nanocellulose-assisted construction of conductive gradient hydrogel for remote actuated and self-sensing soft actuator.

Carbohydr Polym

November 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N

Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.

View Article and Find Full Text PDF