Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phylogenetic networks are graphs that are used to represent evolutionary relationships between different taxa. They generalize phylogenetic trees since for example, unlike trees, they permit lineages to combine. Recently, there has been rising interest in semi-directed phylogenetic networks, which are mixed graphs in which certain lineage combination events are represented by directed edges coming together, whereas the remaining edges are left undirected. One reason to consider such networks is that it can be difficult to root a network using real data. In this paper, we consider the problem of when a semi-directed phylogenetic network is defined or encoded by the smaller networks that it induces on the 4-leaf subsets of its leaf set. These smaller networks are called quarnets. We prove that semi-directed binary level-2 phylogenetic networks are encoded by their quarnets, but that this is not the case for level-3. In addition, we prove that the so-called blob tree of a semi-directed binary network, a tree that gives the coarse-grained structure of the network, is always encoded by the quarnets of the network. These results are relevant for proving the statistical consistency of programs that are currently being developed for reconstructing phylogenetic networks from practical data, such as the recently developed SQUIRREL software tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394373PMC
http://dx.doi.org/10.1007/s11538-025-01510-5DOI Listing

Publication Analysis

Top Keywords

phylogenetic networks
16
semi-directed phylogenetic
12
smaller networks
8
semi-directed binary
8
encoded quarnets
8
phylogenetic
7
networks
7
semi-directed
5
network
5
quarnets
4

Similar Publications

Understanding the diversity of microscopic hyphomycetes is an ongoing effort, and many species remain undescribed. While studying lichen organismal composition in western Canada, metagenomic data revealed the presence of an unknown species of (, Ascomycota), a genus of pollen-parasitic fungus with no previous records in the region. We developed genus-specific primers to amplify DNA in lichen and adjacent substrate extractions, successfully detecting multiple lineages of across a wide geographic range within North America.

View Article and Find Full Text PDF

Efficiency of the cytochrome c oxidase subunit II gene for the delimitation of termite species (Blattodea: Isoptera) in the state of Paraíba, northeastern Brazil.

PLoS One

September 2025

Laboratório de Termitologia, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.

With the aim of expanding the possibilities of identifying termite species, in the present study we generated genetic data based on sequences of the mitochondrial gene encoding cytochrome c oxidase subunit II (COII) for termites (Blattodea: Isoptera) occurring in the state of Paraíba, northeastern Brazil. The genetic data were obtained from 135 COII sequences identified in 28 genera and 48 species. These are the first COII sequences for 15 taxa (31.

View Article and Find Full Text PDF

Kobuviruses (family Picornaviridae, genus Kobuvirus) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, lyssaviruses, and filoviruses, though much of the bat virome still remains uncharacterized.

View Article and Find Full Text PDF

The nitrogen-fixing, chemolithoautotrophic genus is found across numerous diverse environments worldwide and is an important member of many ecosystems. These species serve as model systems for their metabolic properties and have industrial applications in bioremediation and sustainable protein, food and fertilizer production. Despite their abundance and utility, the majority of strains are without a genome sequence, and only eight validly published species are known to date.

View Article and Find Full Text PDF

Long-term evolutionary persistence of a cryptic color polymorphism in frogs.

Proc Natl Acad Sci U S A

September 2025

Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.

Color polymorphism can influence the evolutionary fate of cryptic species because it increases populations' chances of survival in heterogenous or variable environments. Yet, little is known about the molecular and evolutionary mechanisms underlying the persistence of cryptic color polymorphisms, or the impact these polymorphisms have on the macroevolutionary dynamics of lineages. Here, we examine the evolutionary history of the most widespread cryptic color polymorphism in anurans, involving green and brown morphs.

View Article and Find Full Text PDF