A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

IF-MMCL: an individual focused network with multi-view and multi-modal contrastive learning for cross-subject emotion recognition. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electroencephalography (EEG) usage in emotion recognition has garnered significant interest in brain-computer interface (BCI) research. Nevertheless, in order to develop an effective model for emotion identification, features need to be extracted from EEG data in terms of multi-view. In order to tackle the problems of multi-feature interaction and domain adaptation, we suggest an innovative network, IF-MMCL, which leverages multi-modal data in multi-view representation and integrates an individual focused network. In our approach, we build an individual focused network with multi-view that utilizes individual focused contrastive learning to improve model generalization. The network employs different structures for multi-view feature extraction and uses multi-feature relationship computation to identify the relationships between features from various views and modalities. Our model is validated using four public emotion datasets, each containing various emotion classification tasks. In leave-one-subject-out experiments, IF-MMCL performs better than the previous methods in model generalization with limited data.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-025-03430-xDOI Listing

Publication Analysis

Top Keywords

individual focused
16
focused network
12
network multi-view
8
contrastive learning
8
emotion recognition
8
model generalization
8
network
5
multi-view
5
emotion
5
if-mmcl individual
4

Similar Publications