Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Electroencephalography (EEG) usage in emotion recognition has garnered significant interest in brain-computer interface (BCI) research. Nevertheless, in order to develop an effective model for emotion identification, features need to be extracted from EEG data in terms of multi-view. In order to tackle the problems of multi-feature interaction and domain adaptation, we suggest an innovative network, IF-MMCL, which leverages multi-modal data in multi-view representation and integrates an individual focused network. In our approach, we build an individual focused network with multi-view that utilizes individual focused contrastive learning to improve model generalization. The network employs different structures for multi-view feature extraction and uses multi-feature relationship computation to identify the relationships between features from various views and modalities. Our model is validated using four public emotion datasets, each containing various emotion classification tasks. In leave-one-subject-out experiments, IF-MMCL performs better than the previous methods in model generalization with limited data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-025-03430-x | DOI Listing |