Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ascidian Boytryllus schlosseri is a marine chordate that thrives under conditions of anthropogenic climate change. The B. schlosseri expressed proteome contains unusually high levels of proteins adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Prior to this study, which identified 1052 HNE adducted proteins in B. schlosseri by LCMS, HNE protein modification has not been determined in any marine species. Adducted residues were ascertained for 1849 HNE modifications, 1195 of which had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevalence on most sites was high, suggesting that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. We propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics in B. schlosseri. DIA-LCMS quantification of 72 HNE-adducted sites across 60 proteins revealed significant population-specific differences. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. SUMMARY: Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation, leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri, a widely distributed, highly invasive, and economically important biofouling ascidian, and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins may physiologically sequester reactive oxygen species, which could enhance fitness and resilience during environmental change.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.70032DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
hne
13
schlosseri
8
botryllus schlosseri
8
hne adducted
8
hne protein
8
marine species
8
hne modifications
8
reactive oxygen
8
oxygen species
8

Similar Publications

Associations between element mixtures and biomarkers of pathophysiologic pathways related to autism spectrum disorder.

J Trace Elem Med Biol

September 2025

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.

Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF