98%
921
2 minutes
20
The purpose of this study was to establish the relationship between the chilling resistance of rubber trees and the bark-bleeding characteristics caused by chilling stress, considering physiological indicators in rubber tree bark, cell wall chemical components, fiber morphologies, and tensile properties. This offered a unique perspective for examining the underlying mechanisms of latex bleeding and chilling stress in . One-year-old seedlings and two-year-old twig segments in five- and twenty-one-year-old rubber trees (5YB and 21YB) were used to compare the age-mediation differences in their various parameters. Meanwhile, the LT values were calculated with Logistic regression analysis of relative electrical conductivity (REC) data under gradient low temperatures. Subsequently, changes in corresponding parameters of 1-year-old seedling stem bark at different ages were determined, and the bark-bleeding characteristics of seedlings and twig segments were analyzed under artificially simulated chilling stress, respectively. A correlation analysis between semi-lethal temperature (LT) values, relative water content (RWC) values, bark-bleeding characteristics, cell-wall chemical component contents, fiber dimensions, and tensile property parameters was implemented to estimate interrelationships among them. The LT values ranged from -2.0387 °C to -0.8695 °C. The results showed that the chilling resistance order of rubber trees at different ages was as follows: 21YB (2-year-old twig bark from 21-year-old rubber trees) > 5YB (2-year-old twig bark from 5-year-old rubber trees) > SLB (semi-lignification bark in 1-year-old seedlings) > GB (green bark in 1-year-old seedlings). The chilling resistance of seedlings and twig segments in rubber trees was highly positively ( < 0.001) related to fiber morphologies. Chilling-induced bark-bleeding characteristics were significantly correlated ( < 0.001) with fiber morphologies, bark tensile properties, and cell-wall components. The analysis data in this study contribute towards building a comprehensive understanding of the mechanisms of chilling-induced bark bleeding needed not only in rubber tree cultivation but also in sustainable rubber production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388871 | PMC |
http://dx.doi.org/10.3390/plants14162531 | DOI Listing |
Plant Dis
September 2025
Hainan University, Haikou, Hainan, China;
Brown root rot, caused by Phellinus noxius, is a major threat to rubber tree cultivation, resulting in substantial economic losses. Traditional control methods, such as root irrigation with fungicides, are labor-intensive, water-consuming, and inefficient, particularly in regions with limited water resources. This study introduces fluorescent mesoporous silica nanoparticles (FL-MSNs) as a novel delivery platform for tebuconazole to target P.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
Soil green algae play a crucial role in terrestrial ecosystems and enhance soil health. However, research on algal diversity and ecology in crop field soils, particularly in untilled perennial tree plantations, is scarce, and the factors influencing algal contributions to soil health and fertility management are not well understood. Therefore, an extensive study was conducted on the ecology and diversity of green algae in rubber crop plantations in South India, spanning diverse agroclimatic zones, soil orders, soil series, and seasons.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China.
Red root disease in rubber trees, caused by , is a prevalent and severe soil-borne disease in rubber tree cultivation areas. The pathogen exhibits complex infections, with multiple transmission pathways, making the disease highly concealed and difficult to diagnose in its early stages. As a result, prevention and control are challenging, posing a serious threat to rubber production.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
September 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
Hydroxynitrile lyase from Hevea brasiliensis (HbHNL) and the esterase SABP2 from Nicotiana tabacum share the α/β-hydrolase fold, a Ser-His-Asp catalytic triad and 44% sequence identity, yet catalyze different reactions. Prior studies showed that three active-site substitutions in HbHNL conferred weak esterase activity. To investigate how regions beyond the active site influence catalytic efficiency and active-site geometry, we engineered HbHNL variants with increasing numbers of substitutions to match SABP2.
View Article and Find Full Text PDF