Energy Evaluation and Passive Damage Detection for Structural Health Monitoring in Aerospace Structures Using Machine Learning Models.

Sensors (Basel)

Department of Aeronautical and Astronautical Engineering, Boldrewood Innovation Campus, University of Southampton, Burgess Road, Southampton SO17 1BJ, UK.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Structural Health Monitoring (SHM) in aerospace engineering is more and more based on the use of Artificial Intelligence. In this manuscript machine learning algorithms were trained to identify and to characterize the structural effects of impacts on a typical aerospace aluminum panel. A significant experimental campaign was conducted to create suitable impact datasets (the vibrational behavior of the reinforced plate, acquired by piezo sensors). Shallow neural networks, properly trained, were applied to determine critical events affecting the operational conditions. The focus of the manuscript was double: on the severity of the event (a regression problem regarding impact energy) and on the detection of preexisting damage to monitored areas (a classification problem regarding the identification of damaged zones). The scope of this work was to demonstrate the validity of the machine learning approach as an SHM tool for impact effect characterization in a realistic aerospace structure (i.e., energy prediction with a percentage error never more than 10% and identification of previous damaged zones with an accuracy of more than 95%) and to demonstrate its computational efficiency despite the test complexity, provided that the selection of features is guided by a meaningful physical and mechanical interpretation of the underlying phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389765PMC
http://dx.doi.org/10.3390/s25164942DOI Listing

Publication Analysis

Top Keywords

machine learning
12
structural health
8
health monitoring
8
damaged zones
8
energy evaluation
4
evaluation passive
4
passive damage
4
damage detection
4
detection structural
4
aerospace
4

Similar Publications

Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.

Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

Artificial Intelligence in Contact Dermatitis: Current and Future Perspectives.

Dermatitis

September 2025

From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.

Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.

View Article and Find Full Text PDF