98%
921
2 minutes
20
Anthocyanins, the most ubiquitous water-soluble phytopigments in terrestrial flora, have garnered substantial attention in sustainable food packaging research owing to their exceptional chromatic properties, pH-responsive characteristics, and putative health-promoting effects. Nevertheless, their inherent chemical lability manifests as rapid chromatic fading, structural degradation, and compromised bioactivity/bioavailability, ultimately restricting industrial implementation and incurring significant economic penalties. Recent advances in stabilization technologies through molecular encapsulation within polymeric matrices or nanoscale encapsulation systems have demonstrated remarkable potential for preserving anthocyanin integrity while augmenting multifunctionality. The integration of anthocyanins into advanced functional materials has emerged as a promising strategy for enhancing food safety and extending shelf life through smart packaging solutions. Despite their exceptional chromatic and bioactive properties, anthocyanins face challenges such as chemical instability under environmental stressors, limiting their industrial application. Recent advancements in stabilization technologies, including molecular encapsulation within polymeric matrices and nanoscale systems, have demonstrated significant potential in preserving anthocyanin integrity while enhancing multifunctionality. This review systematically explores the integration of anthocyanins with natural polymers, nanomaterials, and hybrid architectures, focusing on their roles as smart optical sensors, bioactive regulators, and functional components in active and smart packaging systems. Furthermore, the molecular interactions and interfacial phenomena governing anthocyanin stabilization are elucidated. The review also addresses current technological constraints and proposes future directions for scalable, sustainable, and optimized implementations in food preservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386039 | PMC |
http://dx.doi.org/10.3390/foods14162896 | DOI Listing |
Nutr Rev
September 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
Background: Musculoskeletal diseases (MSDs) are a common group of conditions involving bones, muscles, cartilage, ligaments, and nerves, which significantly impact patients' quality of life and ability to participate in society. Anthocyanins (ACNs), as phytochemicals, possess various pharmacological and biological activities, including anti-apoptotic, antioxidant, anti-inflammatory, and immunosuppressive properties. In recent years, ACNs have shown remarkable potential in improving MSDs.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
The emergence of antimicrobial resistance poses significant challenges in conventional antibiotic treatments for chronic wound infections, highlighting an urgent need for alternative therapeutic strategies. To address this issue, we developed a multifunctional electrospun nanofiber dressing co-loaded with anthocyanin (ATH) and asiaticoside (AS) that possesses antimicrobial activity. The tri-layer dressing contains three functional components: a hydrophilic polyacrylonitrile-anthocyanin (PAN-ATH) layer for pH monitoring, a hydrophobic polycaprolactone (PCL) layer for exudate management, and a water-soluble pullulan-Bletilla striata polysaccharide-asiaticoside (PUL-BSP-AS) layer.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Hunan Engineering and Technology Research Center for Health Products and Life Science, School of Pharmacy Hunan University of Chinese Medicine Changsha China.
Cinnamon essential oil (CEO), recognized for its broad-spectrum antimicrobial and antioxidant properties, is a natural alternative to synthetic preservatives. However, its high volatility, low water solubility, and strong odor limit direct application. This review examines advanced delivery systems-including emulsions, nanocarriers, molecular inclusion complexes, microcapsules, and liposomes-designed to enhance CEO stability, mask undesirable flavors, and enable controlled release.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
Blueberry anthocyanins demonstrate promising anti-obesity potential, however, their mechanism remains underexplored. This investigation revealed Toll-like receptor 4 (TLR4), an immune receptor recently found to involve in insulin resistance, as a critical mediator of these effects. Male wild-type (WT) and TLR4 gene knockout (TLR4) mice were used to establish obesity model and investigate the anti-obesity effects of blueberry anthocyanin extracts (BAE) based on TLR4.
View Article and Find Full Text PDF